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ABSTRACT 

A general and elementary protein folding step was described in a previous article. Energy conservation during 
this folding step yielded an equation with remarkable solutions over the field of rational numbers. Sets of se- 
quences optimized for folding were derived. In this work, a geometrical analysis of protein beta-sheet backbone 
structures allows the definition of positions of topological interest. They correspond to amino acids’ alpha car- 
bons located on a unique axis crossing all beta-sheet’s strands or at proximity of this axis defined here. These posi- 
tions of topological interest are shown to be highly correlated with the absence of sequences optimized for folding. 
Applications in protein structure prediction for the quality assessment of structural models are envisioned. 
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1. Introduction 
Protein structure prediction from sequences remains a major challenge even though the problem is several dec- 
ades old [1,2]. Protein structure prediction was recently achieved using ab initio methods for small proteins, us- 
ing templates with sequence or fold similarity or using sets of correlated mutations [3-9]. One-dimensional pro- 
tein sequences can generally be predicted from gene sequences on genomic scales [10,11]. Secondary structures 
can also be efficiently predicted computationally from protein sequences [12-17]. However, three-dimensional 
protein structures have generally been solved experimentally and computationally by time-consuming and costly 
approaches such as X-ray diffraction on protein crystals or nuclear magnetic resonance on concentrated protein 
solutions. Independently, studies on protein folding allowed major conceptual advances on the understanding of 
general protein properties linked to their conversion of one dimensional sequences into three-dimensional struc- 
tures [18-21]. Molten globules and pre-molten globules have been characterized [22,23]. A rugged funnel-like 
energy landscape was described for protein folding [24]. Small model systems allowed protein folding simula- 
tions to be carried out [25,26]. Protein engineering and folding kinetics were combined to define folding path- 
ways at the level of single amino acid residues [27]. Consideration of an elementary folding step allowed edge 
strands in beta-sheets to be predicted from protein sequences [28]. A link was also established here between 
protein sequences and three-dimensional structure information: the focus is in this work on amino acids at 
proximity of the axis crossing the beta-sheet’s strands. 

Methods 
The program pdb2 [28] was written in Perl v5.8.9. It can be used on the Mobyle platform at Institut Pasteur [29] 
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and makes use of files from the Protein Data Bank (PDB) [30]. Protein lengths were in the range of 50 to 250 
amino acids. Sequences optimized for folding (SOF) as shown in Figure 1 were computed as described earlier 
[28]. Small proteins and designed proteins were not included in this study. Proteins were chosen because of their 
distinct folds as described in the structural classification of proteins (SCOP) [32]. 

The gap is characterized by an integer value, which is the integer part of the middle of the gap’s ends corres- 
ponding to the set of amino acid positions for which no SOF were found (Figures 1 and 2). Independently, posi- 
tions of topological interest (TIPs) were determined from the protein domain structures’ backbone either by vis- 
ual analysis of the structure using the Pymol software or by automatic annotation using pdb22 (see below). For 
each protein consisting of L amino acids, the number of TIPs T and the number of gaps G were noted in the 
Annex Table A1. A coincidence was defined as an amino acid position where a TIP coincides with a gap within 
a small error range e depending on the protein length L. For proteins of length L between 51 and 100, the gap 
position was defined plus or minus two amino acids (e = 2), thereby corresponding to 5 amino acid positions. 
Similarly, for proteins of length 101 - 150, 151 - 200 and 201 - 250, the error e was defined as 3, 4 and 5 respec-
tively (Figure 2). For example, the structure with PDB reference (1c3g) with 170 amino acids numbered from 
180/1 to 349/170 in the structure and sequence files respectively allows the definition of 10 TIPs corresponding 
to amino acid alpha carbons on the three following axes at positions numbered (266/87; 291/112; 316/137), 
(188/9; 228/49; 253/74), (206/27; 212/33; 247/68; 238/59). The model applied to the corresponding sequence 
allows the definition of two gaps between amino acids 28 and 31 (noted 29 and coinciding with TIP 27) and 
between amino acids 89 and 90 (noted 89 coinciding with TIP 87). Given that the differences between TIP and 
gap numbers is 2 in both cases and as an error of 4 is allowed for proteins of 170 amino acids, the number C of 
coincidences is two for the two gaps (Annex Table A1). The www interface for the identification of gaps is avail- 
able for any protein sequence at the following address: http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::pdb2; it 
accepts PDB file names as entries (4 characters). 

The program pdb22 is available at the address: http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::pdb22; it is 
also a program written in perl and uses the same entry files as pdb2. The pdb22 output file (.xls) provides for 
each protein within the list its PDB name, the amino acid number and name in three-letter code, the start and the 
end of beta-strands indicated as amino acid numbers, the name of the sheet noted on the lines corresponding to 
amino acids found at the intersection of a beta-strand with the sheet axis and the distance D, which is calculated 
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Figure 1. Set of sequences with optimal folding properties. SOFs (red) were calculated as in [28] for the central pro- 
tein domain of Clostridium symbiosum pyruvate phosphate dikinase (PDB reference 2fm4) [31]. A gap defined by the 
absence of SOF is found between amino acids 114 and 115 and is characterized by the integer part of the gap’s middle 
(114). 
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Figure 2. Representation of a gap position and of a gap region in a protein sequence. For the protein domain of PDB 
reference 2fm4 which is 128 amino acids long [31], the small error e of plus or minus 3 amino acids around the gap 
position is applied to proteins of lengths 101 and 150 for the prediction of topologically interesting positions (TIPs). 
 
in Angströms and averaged per beta-strand for each sheet consisting of n strands using the following equation: 
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where mindist(i) is the minimal distance between an alpha carbon of strand i and the sheet axis. The distance d is 
estimated for each pair of amino acids defining an axis characterized by the atomic coordinates of one amino 
acid’s alpha carbon in the first strand and another one in the sequence’s last strand. The sheet axis is defined as 
the axis for which the distance d is minimal. For a sheet, the minimum of all distances d is noted D. 

The probability q for having C coincidences occurring at random, that is the probability for G gaps to coincide 
with T TIPs within the error range e was calculated according to Equation (2) deriving from the exclusion-in- 
clusion principle (cf. Annex for the equation’s proof). 
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The corresponding probabilities q are reported for each protein structure defined by its PDB reference in the 
Annex Table A1. It appears that for 14 of the proteins, the probability q is higher than 0.5. 

In order to compute the p-value of the test, the probability of failing at most 14 times within 46 experiments 
(one experiment for each protein structure associated to a PDB reference) when the probability of failure is tak- 
en as 0.5 was computed using the binomial law as in Equation (3): 
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The severity of this statistical test is highlighted for example by the data obtained for the protein of 193 amino 
acids referenced 3pn3 in the PDB, for which the correct identification of one coincidence for the gap was not 
considered as successful because of the large number of TIPs defined which is associated to a probability (q > 
0.5; Annex Table A1). The numerical value of p  0.0057 indicates the statistical significance, which is far be- 
low the commonly accepted standard threshold of 0.05. 

Independently, a program (pdb7) was written to make use of lists of PDB files as entries and to provide within 
the output sequence file the gaps and TIPs calculated using pdb2 and pdb22 respectively. For each beta-sheet, 
the axis was defined as the line minimizing the distance for all strands from one alpha carbon per beta-strand to 
the line defined by two alpha carbons taken in the first and last strands in the protein sequence as described 
above. Analysis of the pdb7 output files yielded the results for the 248 correlations evaluated between gaps and 
TIPs (Table 1). 

3. Results 

An elementary step of protein folding was described as a folding unit or chemical group folding onto a folding 
entity to yield a larger folding entity [28]. Criteria that are sufficient to define protein subsequences with optimal 
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folding properties were derived [28]. 
A gap was defined as one or several amino acid(s) position(s) for which no sequence with optimal folding 

properties (SOF) is found. A quarter of the proteins analyzed yielded graphs of SOF which did not contain any 
gap. As an example, a single gap was noted between amino acids 114 and 115 for the central domain of C. sym- 
biosum pyruvate phosphate dikinase (Figure 1). The gap’s position was defined as the integer part of the middle 
of the gap (Figures 1 and 2). 

Topologically interesting positions (TIPs) can be determined from protein domain structures’ atomic coordi- 
nates. Beta-sheets are typically curved planes in three dimensions because of the twist found within beta-strands 
[33]. Still, there generally exists at least one axis crossing most, if not all, beta-strands of the sheet (Figure 3): 
we define here a sheet axis as a straight line crossing the sheet’s beta-strands, and which is generally perpendi- 
cular to the beta-strands (cf. Methods). The axis was chosen to cross the first and last strands at amino acids’ al- 
pha carbons. For the other strands, one amino acid per strand is further chosen for its proximity to the axis. The 
axis minimizing the distance to their alpha carbon is represented as a circle including the set of amino acids 
which are on the axis or closest to the axis in the pyruvate phosphate dikinase domain sheet structure (Figure 3). 
The intersection of this axis with each beta-strand yields one alpha carbon at an amino acid position defined as a 
topologically interesting position or TIP. 

An error e for the gaps’ positions prediction was allowed and chosen to increase slightly as a function of in- 
 

Table 1. Distribution of distances between gaps and TIPs within seven amino acids long beta-strands. 

Distancea Calculatedb Observedc 

0 7 33 

1 12 76 

2 10 49 

3 8 52 

4 6 22 

5 & 6 6 16 

aDistance is the difference between a gap position and a topologically interesting position (TIP) within a beta-strand sequence; brelative occurrence 
assuming a random assignment of gaps and TIPs within seven amino acids long beta-strands; coccurrences in a non-redundant set of proteins with at 
least one seven amino acids long beta-strand deriving from the PDB. 
 

 

Figure 3. Positions of topological interest and a beta-sheet axis. Topologically interesting positions (TIPs) shown for a 
protein domain (PDB reference 2fm4) whose backbone is represented by links between adjacent alpha carbons from 
amino acids [31]. TIPs are found on a beta-sheet axis within the circle shown in pink; they are numbered 8, 21, 114, 
123. Amino acid 114 in the sequence file is numbered 497 in the structure file. 
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creasing proteins’ length as described in the methods section (Figure 2). The statistical evidence that TIPs and 
gaps are strongly correlated derives from a binomial test on the analysis of domain structures (Annex Table A1). 
The p-value (<0.0057) calculated (cf. Methods) shows the correlation. Given that gaps can be straightforwardly 
calculated for any protein sequence, the correlation between gaps and topologically interesting amino acid posi- 
tions (TIPs) provides information on the three-dimensional protein structure. 

To obtain an independent proof of this conclusion, another program (pdb7) was then written for automatic 
annotation of gaps and TIPs on protein sequences: the hypothesis that the observed distribution of distances be- 
tween gaps and TIPs (Table 1) follows the calculated distribution assuming a random assignment is excluded 
given the statistical p-value (0.0032). 

4. Discussion 

An elementary protein folding step was described [28]. Application of classical mechanics and of the total en-
ergy conservation law to an elementary folding step yielded a quadratic equation with remarkable solutions over 
the field of rational numbers [28]. 

While numerical applications of equations from classical mechanics are commonly done over the field of real 
numbers, the following pieces of evidence indicate that discreteness provides a useful basis which is adapted in 
particular for the understanding of why the genetic code is the way it is. The genetic code is remarkable because 
of its quasi-universality within living organisms on earth and because it is about four billion years old [34]. The 
role of selection pressures in the definition of amino acid assignments to codons was largely discussed in the 
context of the coevolution of the genetic code with essential proteins [35,36]. A side-chain volume conservation 
was further found to be statistically significant for amino acids involved in precursor-product relationships 
within biosynthetic pathways and put in the context of side-chains’ packing in protein beta-sheets [37]. From the 
experimental side, the genetic code was engineered in multiple studies for applications in protein engineering 
[38-40]. From the theoretical side, discrete symmetries associated to degeneracy in the genetic code were identi- 
fied by Rumer [41,42]. The discrete nature of the most frequent mutations provided a rationale accounting for 
those symmetries [43]. Independently, kinetic energy conservation in polypeptide chains during molecular evo- 
lution was found to be consistent with the grouping of codons in the genetic code; the formalism consisting of 
energy conservation laws with solutions over the field of rational numbers was thereby validated for amino acids 
by the genetic code’s codon arrangement [44]. The field of rational numbers was also taken into consideration 
for another extension of classical mechanics [45]. 

This mathematical and physical formalism provides information on beta-sheet structures from protein se- 
quences as shown recently for the prediction of edge strands [28] and above for the prediction of amino acids at 
proximity of beta-sheet axes (Figure 3). Protein beta-strands and their arrangement in beta-sheets were exten- 
sively described [46-49]. Numerous studies have been undertaken to identify rules linking the beta-strands’ se- 
quences and three-dimensional structural properties of the corresponding beta-sheets [33,50-61]. The notion of 
random quasi-spherical proteins was recently introduced [62]. Several computational approaches allow the pre- 
diction of beta-sheet topology with accuracies around 80% for sheets of more than four beta-strands [63-67]. 
The parallel or anti-parallel character was also predicted by computational methods [68-70]. 

In this work, the absence of sequences optimized for folding was linked to topological information on protein 
beta-sheets. It should be of interest to extend this analysis to other secondary structure elements such as protein 
helices while considering the impact of protein families and classes [71,72]. 

5. Conclusion 

There is a need for practical methods describing complex chemical processes [73]. Predicting the se- 
quence-specific folding of a polypeptide chain into a three-dimensional structure remains a challenge. An axis 
characterizing the topology of beta-sheets was defined in this work. The fast computational method described 
here combining the identification of amino acids at proximity of beta-sheet axes (using pdb22) and the identifi- 
cation of gaps (using pdb7) derives three-dimensional structure information on beta-sheets from protein se- 
quences at scales of topological interest for structural domains of less than 250 amino acids. Both the formalism 
based on energy conservation during an elementary protein folding step [28] and the definition of beta-sheet 
axes should therefore improve protein structure prediction strategies by implementation as quality assessment 
methods for structural models [74-76]: it provides new criteria for the selection of the most accurate protein 
structural models out of thousands of them. A quantitative evaluation of this method’s efficiency may be 
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achieved within the next challenge for the critical assessment of techniques for protein structure prediction such 
as CASP11 [77,78]. 
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Abbreviations 

PDB is the Protein Data Bank; SCOP is the structural classification of proteins; SOF is a sequence optimized for 
folding; a gap consists of one or several contiguous amino acids position(s) for which no SOF were found; G is 
the number of gaps; TIPs are Topologically Interesting Positions; T is the number of TIPs; e is the error tole- 
rated around a gap and is defined as plus or minus a number of amino acids; C is the number of coincidences 
between TIPs and gaps; L is the number of amino acids of a protein or its length; D is the sum for all strands of a 
beta-sheet of the distances from the sheet axis to the closest amino acid alpha carbon in each strand; q is a prob- 
ability as defined in Equation (2); p is the statistical p-value as defined in Equation (3). 

Annex: Proof of the Inclusion-Exclusion Formula 

We give here a proof of the formula for the probability of having at least C coincidences between the G gaps and 
T TIPs in a protein of length L, up to an acceptable error of e: 
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, we may moreover choose the j gaps we want to avoid. 
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tion of TIPs avoiding exactly k gaps gets counted 
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 times in the term: 
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for every 1G C j k    : those are the possibilities to choose j among the k gaps the distribution avoids. To 
get an exact formula for the probability of avoiding at least G – C + 1 gaps, there is a need to compensate this 
via an inclusion-exclusion method. To prove that in the sum above one counts exactly one time a configuration 
of TIPs avoiding exactly k gaps, it remains to prove the formula: 
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For the sake of readability, let us note r G C  . Then one may transform it: 
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Hence the sum we are interested in is rewritten: 
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And it remains to prove: 
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We may use an analytic proof. Define the polynomial in two variables: 
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Then one computes the integral via integration by parts: 
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Annex Table 

Table A1. List of protein domains and of the probabilities q calculated according to Equation (2). 

PDB reference Length C G Ta q 
2cc6 68 1 2 3 0,384 
1mjc 69 1 1 5 0,322 
2nwt 69 1 1 3 0,205 
3n52 73 1 1 4 0,252 
2ld9 77 1 1 7 0,387 
1ydl 79 1 2 3 0,337 
2k7i 83 0 1 3 1 
2lc5 85 0 1 7 1 
2jbg 87 1 1 2 0,112 
1mby 88 1 3 4 0,467 
1xn9 101 1 1 4 0,253 
1ss6 102 2 3 4 0,217 
1i4m 108 1 2 2 0,243 
1kaf 108 4 4 13 0,109 
1b2x 110 0 1 5 1 
3s8s 110 0 2 9 1 
1xw3 110 1 2 5 0,501 
1ic0 112 1 2 6 0,56 
1dg4 115 1 1 8 0,405 
2avu 116 1 1 3 0,172 
1jx7 117 1 1 5 0,27 
1jsg 118 2 3 5 0,16 
3n7h 125 3 5 12 0,532 
2q3l 126 1 1 5 0,252 
2fm4 128 1 1 5 0,249 
1i3v 129 2 4 9 0,542 
2bly 129 5 6 16 0,224 
2f9h 129 1 1 6 0,289 
1nyn 131 1 2 5 0,437 
1nc7 138 2 2 5 0,045 
1j3a 142 1 2 4 0,343 
2p84 145 2 2 8 0,102 
1em8 147 0 1 7 1 
1grj 158 1 2 5 0,458 

2z2m 168 3 3 9 0,05 
1c3g 170 2 2 10 0,173 
3pn3 193 1 1 16 0,549 
1vk2 204 1 2 10 0,689 
2dt5 211 3 4 7 0,076 
1v77 212 6 6 18 0,046 
1gen 218 3 5 14 0,554 
2a8e 220 0 1 15 1 
1ois 223 4 4 12 0,034 
2yle 229 1 1 5 0,22 
2cul 232 4 6 17 0,489 
1npr 248 4 7 16 0,567 

aIn Annex Table A1, TIPs can also include secondary positions of topological interest defined by the intersection of the polypeptide chain with the axis involv- 
ing the N- and C-termini for protein domain structures with few beta-strands to ensure that T ≥ G and allow thereby for predictions to be tested. 




