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Abstract 
 
Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important 
role in interpretation and decision making. A large variety of segmentation methods has been developed; 
among them, multidimensional histogram methods have been investigated but their implementation stays 
difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the 
number of components in image) images or multidimensional images in an unsupervised way using a fuzzy 
neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a 
fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histo- 
gram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondary 
arbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity be- 
tween pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space 
necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors 
population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D 
and 2-D ones, leads to better segmentation results. Various images were segmented; the evaluation of the 
quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the 
classification method k-means gives better results. It thus highlights the relevance of our approach, which 
can be used for solving many problems of segmentation. 
 
Keywords: Multicomponent Images, Unsupervised Segmentation, n-D Histogram, Fuzzy Connected  

Components Labelling, n-D Compact Histogram, Evaluation of Segmentation Quality 

1. Introduction 
 
In many fields such as medicine, food, robotics, security 
systems, etc, the acquisition and the analysis of images 
are essential processes for taking decisions [1-4], as it is 
often difficult to perform them manually, it is necessary 
to automate certain tasks by computing. Thus in this pa- 
per, we present, a new vectorial segmentation method 
based more particularly on the full n-D compact histo- 
grams by a fuzzy connexity analysis. 

Segmentation is an important step in image processing 
and automatic pattern recognition processes based on 
image analysis as subsequent extracted data are highly 

dependent on the accuracy of this operation. In general, 
the automated segmentation is one of the most difficult 
tasks in image analysis [5], because a false segmentation 
will cause degradation of the measurement process and 
therefore the interpretation may fail. The segmentation 
methods based on the analysis of color histograms are 
facing the difficulty of treating a huge quantity of infor- 
mation: for a color image of resolution N  M with each 
component coded on 8 bits, a classical 3D histogram is 
an array of 224 cells, the number in each cell being coded 
on at least log2(MN) bits in order to store the number of 
pixels of each color allowed. In the case where M = N = 
256, the standard 3-D histogram requires 128 Mo. 
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A few years ago, we have proposed a new way of cod- 
ing the nD histograms, leading to the so-called compact 
histogram [6], in which only the occupied cells of the 
classical histogram are memorised. This reduces the 
memory space required drastically: it is lowered to a 
value of 500 ko for a 256  256 image with color com- 
ponents coded on 8 bits, without any loss of color infor- 
mation, it shows its efficiency in previous articles [7,8]. 

Using histograms for classifying colour pixels can be 
achieved through four different strategies. 

The first strategy proceeds in a marginal way. Each 
component of the histogram is examined separately 
[9,10]. The method is easy to implement, but it does not 
take into account the correlation between colorimetric 
components.  

In the second strategy, each colorimetric component is 
requantized on q bits (q < 8) in order to reduce the histo- 
gram size [11]. The method is efficient, but it makes an a 
priori color classification. 

The third strategy that many authors have developed 
proceeds by projection of the 3-D histogram on two of 
the three colorimetric axes. W have developped this 
strategy in a previous paper [12] and used also in other 
articles such as [13-15]; The histogram, with populations 
requantized on 256 levels, is considered as a gray level 
image and processed by a watershed algorithm. The cor- 
relation between components is partially taken into ac- 
count, but the requantization of the populations alters the 
true histogram, and the projection can result in ignoring 
some significant classes. 

Here we propose a fourth strategy. It is fully vectorial, 
which is allowed by the use of the compact n-D histo- 
gram. Its principle consists in finding the peaks of classic 
multidimensional histogram using the compact multidi- 
mensional histogram by the consideration of a model of 
fuzzy neighbourhood. The kernels of the built classes 
correspond to the peaks retained using the algorithm for 
labelling connected components with binary fuzzy 
neighbourhood that we realized in this work, it accepts 
two input parameters which are the degree of fuzzy 
connectedness expressing the similarity between the 
vector points of the compact n-D histogram and a 
population threshold limiting the class size. The choice 
of the fuzzy connectedness here is justified by the 
difficulty of defining a net similarity between the vector 
points attribute or “colors” of the pixels of the image 
[16,17]. This leads to different results of segmentation of 
the same number of classes for different values of pairs 
of thresholds. Assessing the quality of segmentation can 
choose the most relevant segmentation. The results of 
our multidimensional segmentation method are compared 
to those of the method of classification K-means [13,18, 
19] in order to evidence the performance of our approach 

using supervised and unsupervised [20-23] evaluation 
methods of the segmentation quality. 
 
2. A Fast and Compact Multidimensional 

Histogram  
 
We consider multicomponent images (for example mul- 
tispectral images) with n components  1 2,i x xI , for i = 
1 to n, each Ii has a tonal resolution of Q possible values 
and each pixel of spatial coordinate  1 2,x x  takes a 
value among the Q possibilities. A n-dimensional histo- 
gram of such an image would comprise Qn cells. For an 
image with N pixels of resolution, only at most N of 
these Qn cells can be occupied, meaning, as n grows, 
most of the cells of the n-dimensional histogram are in 
fact empty. For example, for a commun 512 × 512 RGB 
color image with n = 3 and Q = 256, there are Qn = 2563 ≈ 
16 × 106 colorimetric cells of n-tuples with at most only 
3N = 5122 = 262144 of them which can be occupied. The 
idea of a compact representation of the n-dimensional 
histogram [6], where only those cells that are occupied 
are coded. The n-dimensional histogram is coded as a 
linear array where the entries are the n-tuples (the colors) 
present in the image and arranged in lexicographic order 
of their components (I1, I2,  , In). To each entry (in 
number ≤ N) is associated the number of pixels in the 
image having this n-value (this color). An example of 
this compact representation of the n-dimensional histo- 
gram is shown in Table 1. 

The practical calculation of such a compact histogram 
starts with the lexicographic ordering of the N n-tuples 
corresponding to the N pixels of the image. The result is 
a linear array of the N ordered n-tuples with their popula- 
tion. With a dichotomic quick sort algorithm to realize 
the lexicographic ordering, the whole process of calcu- 
lating the compact multidimensional histogram can be 
achieved with an average complexity of O(N logN), in- 
dependent of the dimension n. Therefore, both compact  
 
Table 1. An example of compact coding of the 3-dimen- 
sional histogram of an RGB color image with Q = 256. The 
entries of the linear array are the components (I1, I2, I3) = 
(R, G, B) arranged in lexicographic order, for each color 
present in the image, and associated to the population of 
pixels having this color. 

R G B population 

0 0 3 11 

0 0 201 5 

... ... ... ... 

255 40 0 32 

255 251 254 78 
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representation and its fast calculation are afforded by the 
process for the multidimensional histogram. For example, 
for a 9-component 838 × 762 satellite image with Q = 
256, the compact histogram was calculated in about 5 s 
on a standard 1 GHz clock desktop computer, with a 
coding volume of 1.89 Moctets, while the classic histo- 
gram would take 3.60 × 1016 Moctets completely un- 
manageable by today’s computers. 

The advantages of the compact multidimensional ap- 
plied to multicomponent images (see Figure 1) are shown 
in Table 2. 
 
3. Fuzzy Connected Components Labeling of 

Compact Histogram 
 
3.1. Formalism of Fuzzy Logic and Concept of 

Fuzzy Neighbourhood  
 
We present here some aspects of the theory of fuzzy 
logic, fundamental to understanding the algorithm of 
Fuzzy Connected Component Labeling (FCCL) compact 
multidimensional histograms, developed in following 
sections. The reader will find a complete overview in 
[24]. 

X denote the universe of reference, consisting of 
elements x, and place us first in the theory of classical 
ensembles, that is to say net. Then any subset A of X net 
is completely defined by its characteristic function µA,  

defined on the set {0,1} score, by: 

 
1

0 sinonA

ssi x A
x


 


             (1) 

If the set score is now the continuum [0,1], A becomes 
a fuzzy subset of X, and µA is its membership function. 
The subset A is then defined by: 

  , ,AA x x x X                (2) 

An α-cut of A is the net subset of items with a 
membership degree to A greater than or equal to α. It is 
noted Cα(A): 

    AC A x X x              (3) 

The concept of fuzzy relation is a generalization with 
the fuzzy domain of the concept of equivalence relation 
defined in the net case. A fuzzy relation can be measured 
by a scalar in the interval [0,1], the degree to which a 
logical proposal is verified. With a fuzzy relation R is 
associated membership function, denoted by µR. Let X 
and Y be two universes of reference, the respective 
elements x and y. A fuzzy relation between the elements 
of these two worlds is formally defined as: 

 
   

0,1
:

, ,R

X Y
R

x y x y

  

 

            (4) 

 

 
 

  

Forsythia 1 
652 × 578 (n = 3) 

Raison 
384 × 287 (n = 3) 

House 
256 × 256 (n = 3) 

Mandrill 
256 × 256 (n = 3) 

    

Peppers 
256 × 256 (n = 3) 

IRM 
512 × 512 (n = 4) 

M4 
838 × 762 (n = 9) 

Orge 
512 × 512 (n = 10) 

Figure 1. Example of multicomponent images. 
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Table 2. Comparative table of volumes of the classical and compact histograms of the images of Figure 1. 

Images Classical histogram data size (Mo) Compact histogram data size (Mo) Number of spels of compact histogram (N)

Forsythia 1 128 0,28 73278 

Raisin 128 0,35 90802 

House 128 0,36 33925 

Mandrill 128 0,65 61662 

Peppers 128 0,56 53488 

IRM 32768 1,61 140881 

M4 3,60.1016 1,89 116425 

Orge 9,22.1018 4,22 246104 

 
When X=Y, the fuzzy relation is known as binary. 

In one of the following sections will be built a fuzzy 
connected component labeling of compact multidimen- 
sional histogram (it is him which plays the role of 
universe of reference X). The labelling will use a binary 
fuzzy relation, which we call fuzzy similarity, assessing 
the degree of similarity between two spells x and y of 
compact histogram multidimensional. The membership 
function of this relationship will be expressed as: 

     1
,

1 ,,

0 sinon
R

si d x y M
d x yx y

   



    (5) 

This model of fuzzy neighborhood is used in many 
studies [25,26]. In our case, the threshold M is set at 7 
which is the maximum distance allowed so that two 
spells resembles itself, and the distance d considered will 
be that of Chebychev or again call Queen-wise distance, 
given by the following equation: 

 
1

, max
n

i i
i

d x y x y


              (6) 

 
3.2. Classical Connected Components Labelling 
 
We have recently achieved [8] the connected compo- 
nents labelling (CCL) of n-D compact histograms. It 
consists in sweeping all the n-tuples present in the com- 
pact histogram, in order to gather, under the same label, 
the n-uplets which are neighboring in the n-D colorimet- 
ric space.  

Since the n-uplets are ordered in lexicographical order 
inside the compact histogram, labelling a n-tuple is 
achieved by sweeping only the (3n-1)/2 n-tuples con- 
nected neighbours preceding it. For example, Table 3 
shows the four doublets of (i,j) to be swept for labelling 
the doublet (i,j) in the case of 2-D compact histograms. 

The CCL is applied to the full n-D compact histo- 
grams of five multicomponent images (see Figure 1)  

Table 3. Connected neighbours to be swept for CCL of 
doublet (i, j) in the case of a 2-D compact histogram (col- 
orimetric axes I and J). 

Plan I Plan J 

0 0 

… … 

i-1 j-1 

i-1 j 

i-1 J+1 

… … 

i j-1 

i j 

… … 

2Q-1 2Q-1 

 
taken on the web site of gdr-isis. Table 4 shows the 
number of connected components (CC) of their histo- 
grams and, the minimum and maximum size of CC are 
expressed as number of pixels compared to the size of 
the images. 
 
3.3. Principle of Fuzzy Connected Components 

Labelling 
 
The connected component labeling with fuzzy neigh- 
borhood (CCLF) is based on the notion of fuzzy con- 
nectedness and requires the definition of a fuzzy similar- 
ity relation between the spells. Contrary to the notion of 
net neighborhood, a fuzzy neighborhood is defined on a 
fuzzy subset. In the literature, several studies take into 
account the spatial information in the definition of fuzzy 
similarity relation [27,28]. Our neighborhood fuzzy 
model disregards the fact that we work solely on the his- 
togram. The model of neighborhood fuzzy (fuzzy simi- 
larity) selected is defined by Equation (5). The cost of a 
path between two related spells c and d in the histogram  
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Table 4. Statistics in related connected components of the 
images of Figure 1. 

Images Number of CC 
Minimum size 

of CC 
Maximum size 

of CC 

Forsythia 1 7649 1 361047 

Raisin 39878 1 35158 

House 6812 1 20599 

Mandrill 21859 1 17686 

Peppers 12443 1 21963 

IRM 66538 1 152573 

M4 94443 1 51147 

Orge 87558 1 170465 

 
can be defined by the fuzzy relation   as: 

     1 2 1min , , , , , 2m m
k kP C C C C m        (7) 

où 1,..., mP C C is a path between the spells C1 = c 
and Cm = d. As several paths may exist between spell c 
and d, the overall cost of the paths is defined as the 
maximum value of all path costs calculated on the set of 
paths. The overall cost of paths between two related spell 
c and d in the histogram can then be defined by the fuzzy 
relation   as:  

   max
P Pcd

P P  


                (8) 

The fuzzy relation   is an equivalence relation. The 
definition of a  -neighborhood between two spels re- 
quires to fix a minimum threshold of similarity which we 
denote  . This threshold being fixed, find the prede- 
cessors of a spel c returns searching its neighbors of a 
minimum cost   i.e the spels of the net set  -cut of 
the fuzzy relation  . 

Let d be an element of the set of predecessors of c in 
the compact histogram Hc. 

    ,Predecessors c d Hc c d        (9) 

The principle of the CCLF is similar to that of the 
CCL, with for only difference the research of predeces- 
sors of a spel in compact histogram as shown by Equa- 
tion (9). In practice we will vary the value of   to 
study its influence on the number of connected compo- 
nents. Two values bring back to us to particular cases: 
 when 1  , the spels of the compact histogram 

are considered each one as a connected component, 
so the number of connected components equals the 
number of spels; 

 when 0.5   the CCLF corresponds to the CCL. 

3.4. Our Algorithm of Fuzzy Connected  
Components Labelling 

 
The proposed algorithm integrates the search of fuzzy 
predecessors, their number being limited by the fixation 
of overall cost  . The algorithm returns as output the 
vector E containing the labels of spels as they appear in 
the compact histogram, and the number of connected 
components (NberCc) of the histogram. 

[ , ] ( , )function E NberCc FCCL Hc   
//Hc: compact n-D histogram 
//E: table of spels label 
//NberCc: number of connected components 

          //Tequiv: management table of equivalences 
Label 
          //taille: function that returns the number of 
rows in a table 
          //elimineRedondance: removes redundant 
elements of an array 
          //max: function that returns the maximum of 
an array 

//min: function that returns the minimum of a ta-
ble 

          N = taille(Hc)   //number of spels of n-D 
compact  histogram  
          E(1) = 1   //label of the first spel of Hc to 1 

Tequiv(1) = 1    //equivalence label 1 to 1 
For  i = 2: N  

P = Hc(i,:)   //current spel labeling 
j = i -1 
IndexPred = Ø 

 
1

1
d




  

For  j =1: i-1 
While ( 1( ,1) ( ,1)Hc j Hc i d  ) 

c = Hc(j,:) 
If ( ( , )k c d  ) 

IndexPred = [Index-
Pred; j] 
EndIf 

EndWhile 
EndFor 
If (taille(IndexPred)   0) 

Etiq = E(IndexPred)//returns the labels 
of the predecessors 

Etiq = elimineRedondance(Etiq) 
EndIf 
If (taille(Etiq) == 0) 

E(i) =1 + max(E) 
Tequiv(E(i)) = E(i) 

ElseIf (taille(Etiq) ==1) 
E(i) = Etiq 

Else 
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E(i) = min(Etiq) 
Tequiv(E(IndexPred)) = E(i) 

EndIf 
EndFor 
For  i = 2:N  

E(i) = Tequiv(E(i))   //global update of labels 
EndFor 
 
3.5. Example of Results  
 
The FCCL algorithm is applied on the compact n-D his- 
tograms of multicomponent images in Figure 1. Table 5 
illustrates the results for different values of  . It shows 
that when the degree of similarity   decrease, the 
number of connected components (CC) decrease. 
 
4. Fuzzy Vectorial Classification of Tuples 
 
4.1. Principle 
 
The classification of colours is carried out in two steps: 

the learning step and the decision step. 
The learning step is a hierarchical decomposition of 

populations in the compact n-D histogram. For each level 
of population pn, peaks Pi are identified by the FCCL 
algorithm for a given value of α, which retains the con- 
nected components whose populations are greater than or 
equal to pn. Each peak is then iteratively decomposed 
into narrower peaks, beginning from population 0. A 
peak is labelled as significant if it represents a population 
greater than or equal to a threshold S (expressed in per- 
cent of the total population in the histogram). The pro- 
cedure is illustrated in part a of Figure 2 (drawn in one 
dimension for clarity). We shall name kernels Ki the 
peaks corresponding to circled leaves in part b of Figure 
2. In other words, kernels are significant peaks (part a of 
Figure 2) without descendants in the hierarchical de- 
composition tree (part b of Figure 2) (e.g., Figure 2 
shows five significant peaks Pi (i = 0 to 4) and three 
kernels Ki (i = 2, 3, 4)). The number of classes Nc is 
taken equal to the number of kernels (the class corre- 
sponding to kernel Ki is noted Ci). Therefore Nc depends  

 
Table 5. Statistics in related fuzzy connected components of the images of Figure 1. 

Images 
Number of CC 

α = 0.50 α = 0.33 α = 0.25 α = 0.20 α = 0.17 α = 0.14 α = 0.125 

House 6812 2000 684 252 108 59 28 

Mandrill 21859 5939 2016 736 279 106 57 

Peppers 12443 3277 1130 514 261 153 110 

IRM 66538 33594 16572 7687 3718 1704 837 

M4 94443 30373 8583 3020 1307 678 379 

Orge 87558 55312 43431 35493 29236 24808 21423 

 

 
(a)                                                       (b) 

Figure 2. An example of hierarchical decomposition with α = 0.5. The circled leaves (part (b)) correspond to significant peaks 
as obtained at the end of the iterative decomposition (solid lines in part (a)), whereas leaves marked < S (part (b)) correspond 
to insignificant peaks (dotted lines in part (a)).  
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on the threshold S, i.e. on the precision the image colors 
are analyzed with and the value of α the degree of simi- 
larity between the spels. 

In the decision step, the mass center µ(Ki) of each ker- 
nel Ki is calculated in the feature multidimensional space. 
Let us denote by ß the color corresponding to the point of 
coordinates (g1, g2,  , gn) in the feature space. Two 
cases appear: if (g1, g2,  , gn) belongs to Ki, color ß is 
attributed to class Ci; if not, let us denote by Pk the peak 
which belong to (g1, g2,  , gn); color ß is attributed to 
class Ci corresponding to kernel Ki, son of Pk, such that 
d[µ(Ki), (g1, g2,  , gn)] is minimum, where d[y, z] is the 
Euclidean distance between y and z. 

We give a name of this method that we call Hierar- 
chieFuzzy_nD. 
 

4.2. Results of Segmentation 
 
The following figure denote Figure 3 shows an example 
of segmented images by HierarchieFuzzy_nD and K-means 
methods. 
 
5. Methods for Assessing the Quality of 

Segmentation 
 
Image segmentation is a fundamental process in image 
and video analysis. Several approaches have been put 
forward in the literature [22,29]. We have the region, 
contour and texture approaches, but this work interests 
the region approach. It is often used to partition an image 
into separate regions, which ideally correspond to different  

Segmented 
images 

IRM 
(5 classes) 

M4 
(8 classes) 

House 
(5 classes) 

Peppers 
(6 classes) 

H
ie

ra
rc

hi
eF

uz
zy

_n
D

 

α = 0.50 

    

α = 0.33 

    

α = 0.125 

    

K
-m

ea
ns

 

    

Figure 3. Example of segmented images by HierarchieFuzzy_nD and K-means methods. 
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real-world objects. 

Many segmentation methods exist in literature, but it 
is difficult to evaluate the efficiency and to make an ob- 
jective comparison of different segmentation methods. 
This general problem has been addressed for the evalua- 
tion of a segmentation result [20]. There are two main 
approaches: 
 There are supervised evaluation criteria based on 

the computation of a dissimilarity measure between 
a segmentation result and ground truth. Baddeley’s 
distance [30], Vinet’s measure [31], or Hausdorff’s 
measure [32] are examples of supervised evalua- 
tion criteria. In practice the ground truth of natural 
images is a segmentation results manually made by 
experts.  

 There are unsupervised evaluation criteria that en- 
able the quantification of the quality of a segmen- 
tation result without any a priori knowledge. These 
criteria generally compute statistical measures such 
as standard deviation or the disparity of each re- 
gion or class in the segmentation result [33-36]. 

Currently in practice, no evaluation criterion appears 
to be satisfactory in all cases [22]. However, we choose 
here the best criterion for each type of evaluation, i.e. 
Vinet measure for supervised evaluation and Zeboudj 
measure in unsupervised case [22]. 

One potential benefit of supervised methods over un- 
supervised methods is that the direct comparison be- 
tween a segmented image and a reference image is be- 
lieved to provide a finer resolution of evaluation, and as 
such, discrepancy methods are commonly used for ob- 
jective evaluation. However, manually generating a ref- 
erence image is a difficult, subjective, and time-con- 
suming task [20]. 
 
5.1. Vinet Measure 
 
The Vinet’s measure [31] that is a supervised criterion 
which corresponds to the correct classification rate is 
used as reference for the analysis of the synthetic images. 
In this case, the ground truth is available. This criterion 
is often used to compare a segmentation result RI  with 
a ground truth Re fR

I  in the literature. We compute the 
following superposition table: 

   
 

Re

,

, ,f
Ref

R i jR
i j

T I I card R R        (10) 

Where  Ref
i jcard R R  is the number of pixels result-  

ing from the intersection of regions iR  and jR  in the 
ground truth. The best match between iR  and Ref

jR is  

one that maximizes  , RefR R
T I I . Vinet’s measure gives  

a dissimilarity measure, it is computed as follows: 

     
 

,
Ref

R i j

R Ref
R

Card I Card R R
Vinet I I

Card I

 
    (11) 

This criterion is often used to compute correct classi- 
fication rate of the segmentation result of a synthetic 
image. 
 
5.2. Zeboudj Criterion 
 
Zeboudj [35] proposed a measure based on the combined 
principles of maximum interregions disparity and mini- 
mal intraregion disparity measured on a pixel neighbor- 
hood. Zeboudj’s criterion is defined by: 

 
   

 
i i

i
R

R

Card R C R
Zeboudj I

Card I





      (12) 

Where    0,1iC R   is the disparity of the region iR . 
This criterion is suitable for evaluating segmentation 

of homogeneous and little texture images. 
 
6. Results and Discussion 
 
The tests were performed on many multicomponent im-
ages. A synthetic illustration of the evaluation of our 
method of segmentation is applied to images of Figure 1 
with a variation in the number of classes per image to be 
segmented. 

Indexed Table 6(a) to (f) contains the results of the 
unsupervised evaluation applied to different images of 
which we doesn’t ground-truth. However Table 7 illus- 
trates the results of the supervised evaluation obtained 
from 24 images of forsythia and 1 grape image of which 
we have their ground-truth. 

The relevance of our method of segmentation is made 
with respect to k-means known in the world of image 
processing because of its simplicity and its performance. 

The Table 7 shows that in supervised evaluation, the 
fuzzy multidimensional hierarchical method of segmen- 
tation HierarchieFuzzy_nD outperforms k-means for 
each image. This is explained by its ability to detect col- 
orimetrically or spectrally similar classes. 

The indexed Table 6 by (a) to (e) evaluates in a syn- 
thetic way HierarchieFuzzy_nD comparing it systematic- 
cally to k-means and by putting forward the evaluation of 
HierarchieFuzzy_nD in the case of the classical connex- 
ity between spels i.e for α = 0,5. Thus can be drawn the 
following conclusions: 
 The segmentation method HierarchieFuzzy_nD 

proposed gives better results overall compared to 
k-means as well for color images as multicompo- 
nent images in unsupervised evaluation. This is 
justified by taking into account the uncertainty in 
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the spectral data by solving the problem of colori- 
metric or spectral similarity between spels of the 
multidimensional histogram. 

 While limiting oneself to alpha = 0,5 correspond- 
ing to the traditional connexity, we note that for the 
images M4 and Orge of which the number of spec- 
tral plans is high, that HierarchieFuzzy_nD is sys- 
tematically considered to be less powerful than 
k-means. This lower performance is a consequence 

of the phenomenon of over-segmentation justified 
by the Table 4 which shows the widespread prob- 
lem of the spels of the nD histograms in a multidi- 
mensional space when n is large, hence the interest 
of the introduction of fuzzy connectedness between 
spels characterized by the parameter α, highlight- 
ing the relevance of HierarchieFuzzy_nD. The 
major drawback of this last is to be costly in com- 
puting time. 

 
Table 6. Unsupervised evaluation of multicomponent images segmentation; in red, segmentations considered to be the best. 

(a) 

M4 

3 classes Zeboudj 4 classes Zeboudj 8 classes Zeboudj 10 classes Zeboudj 

α = 0.5 0.6754 α = 0.5 0.5673 α = 0.5 0.5656 α = 0,5 0.5685 

α = 0.125 0.6830 α = 0.125 0.6817 α = 0.125 0.6787 α = 0,25 0.6735 

k-means 0.5972 k-means 0.6292 k-means 0.6194 k-means 0.6172 

 
(b) 

Orge 

2 classes Zeboudj 3 classes Zeboudj 5 classes Zeboudj 10 classes Zeboudj 

α = 0.5 0.6920 α = 0.5 0.6194 α = 0.5 0.6265 α = 0.5 0.6229 

α = 0.125 0.8839 α = 0.125 0.8839 α = 0.125 0.8845 α = 0.125 0.8894 

k-means 0.8426 k-means 0.8453 k-means 0.8334 k-means 0.7167 

 
(c) 

IRM 

3 classes Zeboudj 5 classes Zeboudj 8 classes Zeboudj 10 classes Zeboudj 

α = 0.5 0.7325 α = 0.5 0.4869 α = 0.5 0.4285 α = 0.5 0.4356 

α = 0.17 0.7603 α = 0.17 0.4968 α = 0.20 0.7145 α = 0.14 0.7167 

k-means 0.7523 k-means 0.6088 k-means 0.5370 k-means 0,5458 

 
(d) 

Mandrill 

2 classes Zeboudj 4 classes Zeboudj 6 classes Zeboudj 10 classes Zeboudj 

α = 0.5 0.4981 α = 0.5 0.3777 α = 0.5 0.3876 α = 0.5 0.3635 

α = 0.33 0.5323 α = 0.17 0.4408 α = 0.17 0.4280 α = 0.17 0.3845 

k-means 0.4577 k-means 0.4023 k-means 0.3783 k-means 0.3647 

 
(e) 

Peppers 

3 classes Zeboudj 4 classes Zeboudj 6 classes Zeboudj 10 classes Zeboudj 

α = 0.5 0.6607 α = 0.5 0.6433 α = 0.5 0.5977 α = 0.5 0.5939 

α = 0.25 0.6668 α = 0.25 0.6515 α = 0.125 0.6084 α = 0.125 0.5847 

k-means 0.6489 k-means 0.5976 k-means 0.6052 k-means 0.5563 
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Table 7. Supervised evaluation of real images segmentation; 
in red, segmentations considered to be the best. 

 
HierarchieFuzzy_nD K-means 

Vinet (%) 

Forsythia 
(2classes) 

Seg_Img01 5.78 8.43 

Seg_Img02 6.11 10.22 

Seg_Img03 6.04 8.98 

Seg_Img04 5.34 11.06 

Seg_Img05 5.46 9.84 

Seg_Img06 4.34 9.36 

Seg_Img07 8.26 14.06 

Seg_Img08 5.46 10.43 

Seg_Img09 4.69 10.66 

Seg_Img10 4.85 10.35 

Seg_Img11 5.58 12.21 

Seg_Img12 3.65 6.93 

Seg_Img13 3.57 6.88 

Seg_Img14 4.00 7.07 

Seg_Img15 5.27 12.08 

Seg_Img16 5.58 11.71 

Seg_Img17 4.52 8.05 

Seg_Img18 4.21 13.22 

Seg_Img19 4.18 8.57 

Seg_Img20 4.88 8.44 

Seg_Img21 6.87 18.99 

Seg_Img22 5.04 9.42 

Seg_Img23 5.53 8.52 

Seg_Img24 4.19 9.44 

Seg_Raisin 
(3 classes) 

5.76 5.96 

 
7. Conclusion 
 
This work is a contribution to the classification by the 
analysis of multidimensional histograms. It proposes a 
vectorial strategy to segment color or multicomponent 
images and provides the tools necessary for its imple- 
mentation. This work is accompanied by a more general 
reflexion on the principle of classification in a multidi- 
mensional space in connection with the evaluation me-
thods of segmentation. 

We have liberated the large volume of multidimen- 
sional histograms using the nD compact histogram for 
which we have proposed a fuzzy algorithm for labeling 
connected components. This algorithm allowed us to 

develop an unsupervised and nonparametric method by 
vectorial classification of multidimensional histograms. 
We made a solution to the problem of over-segmentation 
generated by the appearance diffuse of multidimensional 
histograms and evaluated our segmentation results. 

We chose to approach the Classification by analyzing 
histograms nonparametrically with emphasis on algo- 
rithmic and geometric approaches comparatively to sta- 
tistical approaches. We justify this choice by the need 
first there was to provide solutions to the problem of 
dealing vectorially histograms of multicomponent im- 
ages because of their size. The tools that we have devel- 
oped, allowed us to better understand the mechanism of 
classification in a multidimensional space and to open 
channels to predict outcomes. 

In Perspective, this work can be directly exploited to 
define new vectorial methods or strategies for the analy- 
sis of multidimensional histograms and their classifica- 
tion. The algorithms developed here can be used to serve 
statistical or spatio-colorimetric approaches for the seg- 
mentation of color and multicomponent images. 
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