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ABSTRACT 

Energy management is being highly regarded throughout the world. High-energy consumption in residential buildings is 
one of the dominant reasons of excessive energy consumption. There are many recent works on the demand-side man-
agement (DSM) and smart homes to keep control on electricity consumption. The paper is an intelligence to modify 
patterns, by proposing a time scheduling consumers, such that they can maintain their welfare while saving benefits 
from time varying tariffs; a model of household loads is proposed; constraints, including daily energy requirements and 
consumer preferences are considered in the framework, and the model is solved using mixed integer linear program-
ming. The model is developed for three scenarios, and the results are compared: the 1st scenario aims at Peak Shaving; 
the 2nd minimizes Electricity Cost, and the 3rd one, which distinguishes this study from the other related works, is a 
combination of the 1st and 2nd Scenarios. Goal programming is applied to solve the 3rd scenario. Finally, the best sched-
ules for household loads are presented by analyzing power distribution curves and comparing results obtained by these 
scenarios. It is shown that for the case study of this paper with the implementation of 3rd scenario, it is possible to gain 
7% saving in the electricity cost without any increasing in the lowest peak power consumption. 
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1. Introduction 

Many experts believe that a major development in the 
electric power system is required. Some of the main ob- 
jectives of this development are a new generation of 
green electricity production networks, reliability and us- 
ing smart systems, which is generally known as the smart 
grids and smart homes. In the smart grid, advanced tech- 
nologies improve network efficiency and mass transfer. 
Information and Communication Technologies (ICT) are 
widely served in the network to increase productivity, 
confidence and flexibility [1]. Finally, consumers can 
benefit low cost bills by actively managing energy con- 
sumption. Now the smart grid has become an interesting 
research topic. The main research considerations are ap- 
plied ICT infrastructure and energy management applica-  

tions, including distributed resource management, load 
management and demand response techniques (DR) [2]. 
In the field of energy efficiency, DR is known as a main 
program of distribution systems. Consumers traditionally 
get the habit to pay a fixed rate for the electrical energy, 
but now they are able to manage their energy usage, 
mainly due to variable tariffs [3,4]. 

Pyrko proposed a model of energy consumption man- 
agement based on energy tariffs [5], where prices vary 
with time. This model is presented particularly for reduc- 
tion of peak load; however, the balances between home 
appliances and consumers are possible only in the case 
that consumers are both able and willing to take advan- 
tage of the tariff information. The paper concentrates on 
time of use (ToU) tariffs as incentive DSM programs. 
With these ToU tariffs, consumers can pay varied expen- 
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diture for electricity during different hours. Recently, 
attention to the ToU tariffs has been increased. For in- 
stance, the neural network algorithm is used for load 
shifting at a petrochemical plant in [6], and fuzzy logic is 
applied for load shifting within a cylinder of hot-water 
[7]. 

The first concerns about behaviors of the energy man- 
agement system for the residential sector are introduced 
in early 1990 [8]. A classification of household appli- 
ances is proposed by Tompros et al., Where network 
architecture with the ability to implement more general 
programs for energy-saving in the Home Area Network 
(HAN) is described  [9]. Zhu et al. proposed a DSM me- 
thod using integer linear programming technique, which 
is able to minimize the peak hourly load and satisfy both 
the consumer preference and specific requirements of all 
individual appliances  [10]. 

The paper also considers the problem of residential 
appliances scheduling for Minimizing Electricity Cost; 
however, unlike [11], the proposed mechanism is deter- 
ministic and the electricity cost planning is based on the 
tariff, typically known for 24 hours ahead of time [12]. In 
general, the approach allows meeting consumer prefer- 
ences, while showing the possibility of load shifting for 
energy efficiency, but cannot be used in a real time plan 
because the user must arrange a list with the appliances 
to be executed within the next 24 hours. 

The remaining parts of this paper are organized as fol- 
lows. In Section 2, the formulation of the household 
loads is represented. Then, modification in the model is 
applied to Minimizing Electricity Cost. In Section 3, a 
list of preferences and load specifications is provided by 
a voluntary consumer. This list includes consumer pref- 
erences regarding the time of using household loads. 
Then, the obtained results from simulations on the list are 
shown. In Section 4, numerical investigations using the 
Mixed Integer Linear Programming (MILP) framework 
are presented and comparisons of different scenarios are 
executed. 

2. Residential Load Management System 

The overall system structure is depicted in Figure 1. The 
predominant component is the Smart Home Controller 
(SHC), which is responsible for managing the loads in-
side the house in order to achieve the objectives such as 
Minimizing Peak Energy Consumption and Minimizing 
Electricity Cost, based on ToU tariffs, Load specifica-
tions, and the information collected from the consumer 
preferences. The SHC can monitor and control loads by 
means of communication networks (e.g. GPRS, WiFi or 
LTE). 

2.1. Residential Load Classification 

The paper divides household loads into three categories  

 

Figure 1. System structure. 
 
including: 

1) Time Changeable Loads (TCLs)  
TCLs can be shifted in time, such as washing ma-

chines. SHC generates scheduled starting commands to 
turn them on. These loads consume electric power based 
on their power consumption pattern which is given by its 
specifications. 

2) Power Changeable Loads (PCLs) 
PCLs consume electric energy in the range of mini-

mum power consumption, and maximum power con-
sumption. SHC decides how much energy these loads 
consume in their working period. 

3) Non Changeable Loads (NCLs) 
For NCLs such as TV which have fixed power con-

sumption requirement  lp  and working period, SHC 
considers the power consumption according to the con-
sumer preferences. 

2.2. Optimization Models 

In this section, parameters, constants and variables, used 
in the models reviewed in this section, are listed in Ta-
bles 1 and 2, respectively. Then the two models, which 
are commonly applied in the literature for optimization 
of peak load and electricity costs, are formulized. At the 
end, the goal programming approach applied for combi-
nation of the two models is introduced. 

Although many studies in the literature consider mini-
mizing energy costs as an original objective function, this 
paper first tries to minimize peak power consumption. 
This model is shown by (1)-(9). It is worthy to mention 
that the electric power is assumed to remain constant in a 
pre-determined time interval, so that “power consump-
tion” in this model is replaced for “energy consumption” 
at the same time interval, where the load is peaking.  

,
min

h
lPPC c

PPC
                   (1) 

l L

s.t , h H,h
lc PPC



                

T
11 DR llC L,                 
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Table 1. Model variables list. 

Variables Explanation 

PPC  Peak power consumption 

h

lc  Power consumption of lth load at hth hour 

h

lu  
Binary variable:  if lth load start  

operation at hth hour, otherwise  

1h

lu 

0h

lu 

lC  Binary integer vector of  h

lu

lU  Energy consumption vector for lth load 

hc  Total loads energy consumption at hth hour 

hC  Vector of all  hc

 
Table 2. Electricity tariff (spot price). Data taken from 
NYISO, www.nyiso.com, February 15th, 2011. 

Period  
of time 

Energy prices 
(USD/KWh) 

Period of time 
Energy prices 
(USD/KWh) 

0 - 1 am 0.0403 12 - 1 pm 0.0660 

1 - 2 am 0.0377 1 - 2 pm 0.0660 

2 - 3 am 0.0363 2 - 3 pm 0.0635 

3 - 4 am 0.0372 3 - 4 pm 0.0635 

4 - 5 am 0.0381 4 - 5 pm 0.0600 

5 - 6 am 0.0399 5 - 6 pm 0.0943 

6 - 7 am 0.0513 6 - 7 pm 0.0928 

7 - 8 am 0.0564 7 - 8 pm 0.0702 

8 - 9 am 0.0577 8 - 9 pm 0.0606 

9 - 10 am 0.0676 9 - 10 pm 0.0534 

10 - 11 am 0.0689 10 - 11 pm 0.0466 

 

 s 1* s
l l l lp , l NCLs, h h , h , , hh

l
ec             

 s 1s
l l l l lp p , l PCLs, h h , h , , hh

l
ec            

1 24 3 2
l l l l

2 1 4 3
total l l l l

l

24 23 2 1
l l l l

p p p p

p p p p

p p p

 
 
   
 
  

P



   
 p

s

          

 24 1T1 1, 0,1l lU U
               

total
l , l TCLl lC U  P             

0,h
lc                     

As mentioned above, this paper is based on time vary-
ing prices of electricity. Table 2 shows dynamic electric-
ity tariffs, which are also referred to briefly by the Real- 
Time Pricing (RTP). 

In addition, the time of use tariffs based on Table 3  

Table 3. Model parameters and constants list. 

Parameters/ 
constants 

Explanation 

L  Number of loads (home loads) 

H  Number of hours (24 hours in the day) 

lDR
 Daily Requirements of energy for lth load 

s

lh
 Start time operation for lth load 

e

lh
 End time operation for lth load 

*

lp
 Fixed hourly energy consumption for lth load 

lp
 

Standby energy consumption for lth load 

lp
 Maximum energy consumption for lth load 

h

lp
 Fixed energy consumption for lth load at hth hour

lP
 Fixed energy consumption pattern for lth load 

total

lP
 

All the possible shifts for the vector  lP

ht  Electricity tariff for hth hour 

T  Electricity tariff vector 

 
are used to minimize electricity cost and the terms 
(10)-(19) show the model for minimizing electricity cost. 

T

h
l

h

c
min C


T

               (10) 

T Th 1 2 24 1 2 24,, , , t , t , , tC c c c      T       (11) 

number of loads
h h

l
l 1

h Hc c


          (12) 

l L

s.t , h H,h
lc PPC



             (13) 

T
l1 DR llC L,                (14) 

 s 1* s
l l l lp , l NCLs, h h , h , , hh

l
ec           (15) 

 s 1s
l l l l lp p , l PCLs, h h , h , , hh

l
ec           (16) 

 24 1T1 1, 0,1l lU U
               (17) 

total
l , l TCLl lC U  P s            (18) 

0,h
lc                     

The constraints (6)-(8) are used to model TCLs power 
consumption, where (6) shows the total shifts for TCLs  

power consumption pattern .The   T1 2 24
l l l lp , p , , p   P 

vector l  operates as a switch controller that specify 
the start time for TCLs. In view of the fact that the vector 

U
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l  must act same as the vector l , needed to introduce 
the matrix  that considers total shifts of vector l  
in time. The vector T  shows time of 
use tariffs taken from Table 3. for example  

C P

, t

total
lP P

T1 2 24t , t ,  

3t  0.0363 usd kw

hC

h *
1 1

10
1

11
1

19
1

c p

1.5

1.5

1.5

c

c

c









 shows the cost of power consump-
tion in the time interval between 2 am to 3 am. The vec- 
tor  indicates all loads power consumption per hour. 

In this paper, both planning models are MILP that can 
be solved by many well-founded approaches. Although 
in small case studies it is possible to try a direct search 
method, in the literature branch and cut procedures are 
introduced as very popular methods for solving a wide 
range of integer programming problems providing a 
guarantee of global optimality. Branch and cut methods 
are accurate algorithms including of a mixture of a cut-
ting plane method with a branch and bound algorithm. 
These methods work by solving a sequence of linear 
programming relaxations of the integer programming 
problem [13]. 

The goal programming approach changes some objec-
tives into constraints by adding slack and/or surplus 
variables to represent deviation from a goal. There are 
some algorithmic changes possible to allow a more ef- 
fective solution, but for the majority of applications, sim- 
ply using a linear programming package like Solver is 
completely adequate. 

Both of these linear programming problems are equa- 
lly important. However, sometimes one of the objectives 
dominates the other, with respect to some criteria. In 
these issues can insert weighting coefficients in the goal 
programming problem and distinguish the difference in 
importance to the objectives [14]. 

3. Case Study and Simulation Result 

In this section, simulations are carried out by a high level 
computer languagewhich is applied for implementation 
of the proposed mechanism under various scenarios. Ta-
ble 4 contains a voluntary customer appliance, listed 
along with the specifications of the loads and consumer 
preferences. 

For example, as one of the NCLs, load 1 has 15 kWh 
daily energy requirements which is modeled as follows:

1 2
1 1 15c c   

10 19
1, h h , , h   

24
1c

11
1, h

              

1   

       

As a one of the PCLs, load 5 has 4 kWh daily energy   
requirements and the model as follows: 

Table 4. Consume preferences and loads specification. 

Load 
no.

Load name
Daily  

energy 
requirement 

Operation 
time 

Load  
specification 

(power  
consumption)

Load 
type

1 
Air  

conditioning 
system 

15 kWh 10 am - 7 pm 1.5 kW NCL

2 Refrigerator 2.448 kWh 24 hours 0.104 kW NCL

3 Oven 1.8 kWh 6 am & 8 pm 0.9 kW NCL

4 TV 1.2 kWh 
9 pm -  
23 pm 

0.4 kW NCL

5 
Electric vehicle 

(PHEV-10)
4 kWh 

8 pm -  
8 am 

Min 0.1 kW
Max 1.6 kW

PCL

6 Water pump 7 kWh 
requirements 

provided 
Min 0.125 kW
Max 0.9 kW

PCL

7 
Washing 
machine 

2 kWh 
2 hours  
in a day 

1st hour: 1 kW
2nd hour:1 kW

TCL

8 
Dish  

washer 
1.8 kWh 

2 hours 
 in a day 

1st hour: 1 kW
2nd hour: 0.8 

kW 
TCL

9 Iron 1.4 kWh 
6 am or  

6 pm - 10 pm 
1.4 kW TCL


1 2 24
5 5 5 4c c c                  

h 20 24 1
5 5 5 5 5 5 5

20
5

24
5

1
5

8
5

p p , h h , , h , h , , h

0.1 1.6

0.1 1.6

0.1 1.6

0.1 1.6

c

c

c

c

c

8      
 

 

 

 

 





  

As a one of the TCLs, load 8 has 1.8 kWh energy daily 
requirement. The power consumption pattern is  

 and the total shift is obtained from 
:
 T

8 1,0.8,0, ,0P 
total

8P


total
8

1 0 0 0 0.8

0.8 1 0 0

0 0.8 1 0 0

0 0 0.8 0

1 0

0 0 0 0.8 1

 
 
 
 

  
 
 
 
  

P




  

       

3.1. Simulation Results 

Three power distribution curves are obtained from case 
study. The case study is modeled by minimizing peak 
power consumption problem (1)-(9) and minimizing elec-
tricity cost problem (10)-(19). 
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The 1st scenario: Figure 2 shows the lowest peak 
power consumption (PPC). This amount is equal to 2.127 
kW which takes place at 9 pm. It can be observed that the 
load between 10 am to 8 pm is also smooth and almost 
equal to the peak. 

By using Table 3, the monthly electricity cost is calcu-
lated as follows: 

9
h h

l 1

t 2.2384 USDc


            (25) 

2.2384 30 67.152 USD            (26) 

The 2nd scenario: Figure 3 shows the power distribu-
tion curves with the amount of PPC equal to 2.5 kW. The 
monthly electricity cost is obtained 62.199 USD. Solution 
of the model in this case has led to more fluctuations in 
the power. Particularly, it is seen that a considerable 
amount of the load is shifted to midnight hours, where the 
peak load is placed due to charging the vehicle and the 
operating pump. 

The 3rd scenario: Figure 4 shows the power distribution 
curves when two objectives (minimizing peak and costs) 
are applied together. The monthly cost is 62.373 USD. 

3.2. Analysis of the Results 

For the 1st scenario, we claim that 2.127 kW is the lowest 
peak power consumption, but some other power distribu-
tion curves may exist with the same amount of this peak; 
i.e. the solution composition is not unique. 

For the 2nd scenario, as a result, just by a slight in-
creasing the lowest amount of peak power consumption 
(PPC = 2.127 kW) and fix the amount to the 2.5 kW, we 
can save 7% of electricity cost. 

Finally, for the 3rd scenario, when the two objectives, 
including minimizing peak power consumption and 
 

 

Figure 2. 1st scenario, power distribution diagrams for 9 
loads. 

 

Figure 3. 2nd scenario, power distribution diagrams for 9 
loads (PPC = 2.5 kW). 
 

 

Figure 4. 3rd scenario, power distribution diagrams for 9 
loads. 
 
minimizing electricity cost are considered together; we 
get the best solution. In other words, without any increas- 
ing in the lowest peak power consumption, we can save 
7% of electricity cost. 

4. Conclusion 

The comparison between the 3rd scenario with the 1st and 
the 2nd scenarios led to an important conclusion: the 3rd 
scenario satisfies the objective of the 1st scenario (mini-
mizing peak power consumption) without increasing the 
lowest peak power consumption. Indeed, it can satisfy 
the objective of the 2nd scenario (minimizing electricity 
cost). In this paper, we have proposed two models for 
household loads to optimize energy consumption in the 
residential sector network. These proposed models with 
using the goal programming approach together can si-
multaneously minimize the peak load and electricity cost. 
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