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ABSTRACT 

This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of 
the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints 
are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence 
of an inverse function utilized in the algorithm is investigated. Then, an example is shown in order to evaluate the effec- 
tiveness of the proposed method. By using the proposed integrating algorithm, we can easily calculate independent first 
integrals for given constraints, and hence it can be utilized for various research fields. 
 
Keywords: Fully Rheonomous Affine Constraints; Geometric Representation; Rheonomous Bracket; Complete  

Integrability; Integrating Algorithm 

1. Introduction 

Over the last couple of decades, a lot of researches on 
nonholonomic systems have been done in the research 
fields of nonlinear control theory and robotics [1-3]. In 
addition, sub-Riemannian geometry has also been studied 
in the research fields of differential geometry and control 
theory [4,5]. The common property in these two is the 
existence of constraints. The constraints play important 
roles in these research fields and yield attractive and in- 
teresting characteristics.  

The simplest class of constraints is linear constraints: 
, ,   0B q q  nq R  n m nB R   , and they have been 

mainly studied so far. The class of the linear constraints 
covers wide-ranging mechanical systems such as mobile 
and acrobatic robots. However, there also exist wider 
classes of constraints. The author has focused and re- 
searched scleronomous affine constraints:  
    0A q B q q  , n mA R 

 , B q q 
 and A-rheonomous affine 

constraints: , which form a wider 
class of constraints than the linear constraints, from the 
viewpoints of mathematics and control theory [6-10]. 
Note that in analytical mechanics, the terminology 
“rheonomous” means “time-varying”, and the opposite  

 

word of it is “scleronomous”. The affine constraints can 
be found in mechanical systems such as space robots 
with initial angular momenta, a ball on a rotating table, a 
ship on a running river, and so on. These results have 
made it possible to treat such constraints systematically, 
however, we are still interested in fully rheonomous af- 
fine constraints:    , ,A t q B t q q 0   as a much wider 
class of constraints than the $A$-rheonomous affine con- 
straints. In [11], the author has derived a complete inte- 
grability condition for the rheonomous affine constraints. 
If the constraints are integrable, there exist some inde- 
pendent first integrals of them. It is quite important to 
calculate independent first integrals since they can be 
utilized for reduction of the configuration space. 

Hence, the purpose of this paper is to develop an inte- 
grating algorithm for the fully rheonomous affine con- 
straints. This paper is organized as follows. First, in Sec- 
tion 2, some preliminaries on the fully rheonomous affine 
constraints are presented. Next, in Section 3, an integrat- 
ing algorithm for completely integrable rheonomous af- 
fine constraints is constructed. Moreover, theoretical 
analysis of the algorithm is shown. Then, Section 4 illus- 
trates an example for verification of the effectiveness and 
the availability of the new results. 

0A t q
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2. Preliminaries 

2.1. Fully Rheonomous Affine Constraints 

In this section, some preliminaries on fully rheonomous 
affine constraints are presented. See [11] for more details. 
First, this subsection gives the definition of fully rheo- 
nomous affine constraints and explains their geometric 
representation. Denote the time variable by  and a 
time interval by 

t R
I R

T Q

. Let Q  be an n -dimensional 
configuration manifold and  

1  be a local coordinate of . As- 
sociated with , we refer 

 nq q q 
q

 Q
Tnq 1q q Q 
m

  
n m n

 as a 
tangent vector field. A set of  of differ- 
enttial equations in the form: 



     1 1, , ,

0 1, , .
i i in nA t q B t q q B t q q

i n m

  

  

 


      (1) 

is called fully rheonomous affine constraints. Note that 
all the coefficients , , _1, , , 1, ,i ijA B i n m j n  

t
 ex- 

plicitly depend on the time variable . We now rewrite 
(1) as 

   , ,A t q B t q q  0,             (2) 

where a rheonomous affine term  , n mA t q R   is a 
vector-valued function whose -th entry is i  ,iA t q , 
and a rheonomous velocity coefficient matrix  q,B t  is 
a matrix-valued function whose -th entry is ij  ,qijB t . 
In this paper, we assume the following sufficient condi- 
tion on independency of the fully rheonomous affine 
constraints (2): 

 , , ,rankB t q n m t I q Q             (3) 

Next, a geometric representation method of the fully 
rheonomous affine constraints (2) is explained. From (1), 
we see that the  row vectors of  in (2) are 
independent of each other. Hence, we consider  vec- 
tor fields which are independent of each other and anni- 
hilators of the  row vectors of , and de- 
note them by 

n m

n m
 

 ,B t q

 ,B t q


m


 , ,mY t q

1

1 , ,Y t q
Q
, , mY Y

 as time-varying vec- 
tor fields on . Furthermore, we also denote a space 
spanned by , that is, a time-varying distribution 
on  by Q

      1, , , , mD t q span Y t q Y t q  ,        (4) 

Since the basial vectors of : 1  are inde- 
pendent of each other,  is a nonsingular distribution, 
that is, 

D , , mY Y
D

 dim , , ,D t q m t I q Q              (5) 

holds. A curve on :  is said to satisfy the 
fully rheonomous affine constraints (2) if for a time- 
varying vector field on : 

Q :q I Q

Q X  and the generalized ve- 
locity of : , q  q tq T Q

       , , ,q t X t q t D t q t t I           (6) 

We call X  a rheonomous affine vector field, and it 
satisfies the equation: 

     , , , 0, ,A t q B t q X t q t I q Q          (7) 

This definition is a natural extension of the one for the 
scleronomous affine constraints that do not contain the 
time variable explicitly [6]. Geometric representation of 
the fully rheonomous affine constraints is defined as fol- 
lows and can allow us to analyze them geometrically and 
derive geometric properties. 

Definition 1 
The fully rheonomous affine constraints (2) are geo- 

metrically represented by a pair , where  is 
an -dimensional time-varying distribution defined by 
(4) and 

 ,D X  D
m

X  is called a rheonomous affine vector and sa- 
tisfies (7). 

2.2. Rheonomous Bracket 

Next, in this subsection, a new operator for the fully 
rheonomous affine constraints (2), called the rheonomous 
bracket is shown. The rheonomous bracket is originally 
introduced in order to analyze the A-rheonomous affine 
constraints in [8-10] and plays important roles in deriva- 
tion of a complete integrability condition and an inte- 
grating algorithm. The rheonomous bracket is funda- 
mentally defined based on the normal Lie bracket 
 , :TM TM TM   

,
, which is an operator for two 

vector fields Z W : 

 , :
W Z

Z W Z
q q

 
 
 

W            (8) 

The definition of the rheonomous bracket is as follows. 
[8-10]. 

Definition 2 [8-10] 
For the vector fields defined on  on the geometric 

representation of the fully rheonomous affine constraints 
(2): 

Q

1, , , mX Y Y , the rheonomous bracket is an operator: 
, :TQ TQ  TQ   that satisfies the following three 

properties: 
a) For a rheonomous affine vector field X , 

,X X  0                   (9) 

Holds. 
b)  is defined as a set of vector fields that consists 

of  and iterated rheonomous brackets of 

1 m

0D

1, ,Y 
, , ,

mY
X Y  Y  and does not contain X . For a rheono- 

mous affine vector field X  and a vector field 0Z D , 

  , , , ,
Z Z ,X Z X Z Z X Z
t t

 
    
 

X    (10) 

Holds. 
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c) For two vector fields 0,Z W D , 

 , 0, , ,Z Z Z W Z  W            (11) 

holds. 
For the rheonomous bracket, it is noted that the 

rheonomous affine vector field X  is perceived as spe- 
cial, and this yields an additional term of a time different- 
tial of a vector field as the property (b). It must be also 
noted that from Definition 2 the rheonomous bracket is 
equivalent to the normal Lie bracket for scleronomous 
affine constraints, that is, constraints that do not contain 
the time variable explicitly. The following proposition 
shows that the rheonomous bracket has some important 
characteristics in common with the normal Lie bracket 
[8-10]. 

Proposition 1 [8-10] 
For the vector fields on the geometric representation of 

the fully rheonomous affine constraints (2): 1, , , mX Y Y
0D

 
and the set of iterated vector fields of them: , the fol- 
lowing properties (a), (b), and (c) hold. 

a) Bilinearlity: 

0

, ,

, , ,

, , ,

, ,

,

X aZ bW a X Z b X W

aZ bW x a Z X b W X

a b R Z W D

  

  

 

      (12) 

b) Skew-symmetry: 

0, , ,X Z Z X Z  D            (13) 

c) Jacobi’s identity: 

0, , , , , , 0 ,X Z W Z W X W X Z Z W D   

(14) 

From the properties in Proposition 1, it can be con- 
firmed that we only have to consider the iterated rheo- 
nomous brackets in the form: 

1 2 1 1 1: , , , , , , , , , ,k k k mP P P P P P P X Y Y    

(15) 

in checking a complete integrability condition for the 
fully rheonomous affine constraints, which will be shown 
in the next subsection. Furthermore, the Philip Hall basis 
[12], which is a systematic method to generate iterated 
Lie brackets with an order efficiently, can be also con- 
structed for the rheonomous bracket as follows [8-10]. 

Algorithm 1 
For iterated rheonomous brackets (15) of the geomet- 

ric representation of the fully rheonomous affine con- 
straints (2): 1, , , mX Y Y , we define the length of (15) as 

, that is, the number of vector fields in the iter- 
ated rheonomous bracket. In addition, the symbol   
means the magnitude relation for two iterated rheono- 
mous brackets. Then, the Philip Hall basis 

 l P k

H  for the 
rheonomous bracket can be constructed by the next rules. 

a) 1, , , mX Y Y  are the first  elements of 1m  H  
and 1 mX Y Y  . 

b) If    1 2l P l P , then . 1 2P P

c) 1 2,P P H  if and only if 1 2,P P H  and 
, either 1P P 2 1P X  or i  holds 

or 
 1, ,i m  1P Y

1 3 4,P P P  with  and . 3 4 H,P P 3 4P P

2.3. Complete Integrability Condition 

Finally this subsection presents a complete integrability 
condition for the fully rheonomous affine constraints (2). 
If all the n m  rheonomous affine constraints (2) are 
integrable, that is, there exist  independent first 
integrals of (2), then they are said to be completely inte- 
grable. We now define a smallest and involutive time- 
varying distribution 

n m

 0 ,C t q  that contains 1  
and iterated rheonomous brackets of them, and satisfies 

, , mY Y

0, , 0X W C W C    that is,  is spanned by all the 
rheonomous brackets of 1

0C
, m, ,X Y Y  with the exception 

of X . Then, a necessary and sufficient condition on 
complete integrability for the fully rheonomous affine 
constraints (2) is given as the next theorem [11]. 

Theorem 1 [11] 
For the fully rheonomous affine constraints defined on 

an $n$-dimensional manifold  (2) and a time interval Q
I R , the following statements (a) and (b) are equiva- 
lent to each other. If they hold, the fully rheonomous 
affine constraints (2) are said to be completely integrable. 

a) There exist n m  independent first integrals of the 
fully rheonomous affine constraints (2). 

b) For a smallest and involutive time-varying distribu- 
tion  0 ,C t q , 

 0dim , , ,C t q m t I q Q             (16) 

holds. 
From Theorem 1, we can see that the complete inte- 

grability condition for the fully rheonomous affine con- 
straints (2) is quite simple and has a similar structure as 
the ones for the scleronomous affine constraints and the 
A-rheonomous affine constraints [6,7]. In addition, it 
turns out that the rheonomous bracket plays a significant 
role in the condition (16). 

3. Integrating Algorithm 

3.1. Proposed Integrating Algorithm 

As seen in Section 2, if the fully rheonomous affine con- 
straints (2) are completely integrable, there exist some 
independent first integrals of them. For reduction of the 
dimension of a given configuration manifold subject to 
completely integrable fully rheonomous affine con- 
straints, we need the explicit forms of independent first 
integrals of them. For scleronomous linear constraints, 
that is,   0B q q  , a method of calculation of inde- 
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pendent first integrals is well known [12,13], and for 
scleronomous affine constraints:  and 
A-rheonomous affine constraints: 

    0A q B q q 
 


 ,A t q B q q  0  

we have developed algorithms to calculate independent 
first integrals of them in [7,9,10]. However, a method to 
calculate independent first integrals of given fully rheo- 
nomous affine constraints has not been proposed. There- 
fore, this section of the paper develops an integrating 
algorithm for the fully rheonomous affine constraints and 
gives theoretical analysis of the algorithm. 

In this subsection, we derive an integrating algorithm 
for completely integrable fully rheonomous affine con- 
straints (2). Theorem 1 in Section 2 guarantees the exis- 
tence of  independent first integrals of the fully 
rheonomous affine constraints (2). Hence, we aim to 
construct an algorithm to calculate these $n-m$ inde- 
pendent first integrals. First of all, we can find 

n m

n m  
vector fields  such that 1, ,mY   nY

 1 1, , , ,m m , n
nspan Y Y Y   Y R         (17) 

holds for the vector fields of the geometric represent- 
tation for the fully rheonomous affine constraints (2): 

1 . Let us denote flows (1-parameter local trans- 
formation groups) of 

, , mY Y
X  and i  by Y X

t  and 
i

iY
  

with time parameters  and it  , respectively. We set an 
initial point at the initial time  as 0t t 0q Q . We 
also consider  vector fields defined on the ex- 
panded configuration manifold 

1m 
:Q R Q  , and then 

their flows on  are represented as Q

0
: , , 1, , .i m i

ii
i

YX
Yt X

t

t



 


  

    
   

       (18) 

Note that the initial value of i  is set as 0. Calculat- 
ing the composite mapping of  flows (18) yields 1n 

1
1

1

0
n

n

YY
t

t

 
 

1
: n

n

YYX
Xt

t
   

 
 

        

n

n

Y

   

(19) 

where 

1

1

YX
t t                   (20) 

is the composite mapping of 1n   flows  
1

1
, , , n

n

YYX
t     . From (19), we see that the projection of 
  onto  is equivalent to Q t . Therefore, by apply- 
ing the idea of the integrating algorithm for scleraono- 
mous linear constraints defined on  [14,15] to Q R Q  
and considering projection of it onto , we can derive 
the following algorithm to calculate  independent 
first integrals of completely integrable fully rheonomous 
affine constraints as follows. 

Q
n m

Algorithm 2 
For the completely integrable fully rheonomous af- 

fine constraints (2), we can obtain $n-m$ independent 

first integrals of them by the following procedure. 
(Step 1) Set 1m   vector fields 1, , , mX Y Y  of 

geometric representation for the fully rheonomous affine 
constraints (2). 

(Step 2) For 1, , , mX Y Y
, ,m nY Y 

, derive linearly independent 
vector fields  that satisfy (17). 1

(Step 3) Calculate flows of 1, , , nX Y Y  and set them 
as 1, , , nYYX

t 1 n    . 
(Step 4) Combine 1n   flows 1

1
, , , n

n

YYX
t      as 

(20). 
(Step 5) Set  tq    and derive the inverse func- 

tion  1
t q  

n m
, where . Then, 

the last 
 T1

n
n R   

  components of  are independent 
first integrals of (2). 

 1
t q

It must be noted that Algorithm 1 is similar to the ones 
for the scleronomous affine constraints case and the A- 
rheonomous affine constraints case [7,9,10], and hence 
Algorithm 2 is a natural extension of them. 

3.2. Theoretical Analysis 

This subsection gives theoretical analysis on the inte- 
grating algorithm for completely integrable rheonomous 
affine constraints. In Algorithm 2 derived in the previous 
subsection, we need to calculate the inverse function of 
the combined mapping: 1

t
  in order to calculate inde- 

pendent first integrals. However, we still have a impor- 
tant question on the existence of the inverse function. In 
general, it is quite difficult to calculate an inverse func- 
tion of a given function. For Algorithm 2, the next pro- 
position guarantees the existence of the inverse map- 
ping 1

t
 . 

Proposition 2 
Assume that the fully rheonomous affine constraints 

(2) are completely integrable. Then, there exists an time 
interval I R

t
 and  is a diffeomorphism 

at any time 
: n

t R  Q
I . That is to say, there exists its inverse 

mapping 1
t
 . 

(Proof) Set 
TTt     . Calculating the partial dif- 

ferential of (19) with the chain rule of differential calcu- 
lation, we have 

 
 
 

 

 

1

1

1

1

1

1

1 1 1

1 1 1

1

1 1 1

1 1 1

1

:

:

.

n

n

n

n

n

n

i n

i n

i n

i n

YYX
t

YYX
t

YYX
t

i i

Y YX
Y Yt

i

Y YX
Y Yt

i

t t

X

Y

 

 

 

 
 

 
 

  

  

  
 

 
 

   

 
 

  







 


 



 


 

  


   

 


  

 

 

 

 

 



   (21) 

Substituting 
T0 0 0 0t        into (21), we 
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obtain 

   
0 0

0 , i
i

0X q
t    

 

 


 
Y q       (22) 

that is to say, 

     
0

0 0 0
1 nX q Y q Y q

  

  
 

     (23) 

Since 1, , , nX Y Y  are linearly independent of each 
other, 

0

1rank n
  


 


             (24) 

holds. Therefore, it turns out that    is a diffeo- 
morphism by the implicit function theorem [12,13]. 
Since the projection of    onto Q  is equivalent to 

 t  ,  t   is also a diffeomorphism. Consequently, 
the proposition is proven. 

4. Example 

Finally, in this section, an example is considered in order 
to evaluate the new results. Let us consider a 3-dimen- 
sional configuration manifold: 

  T 3
1 2 3 3 0Q q q q q R q           (25) 

with , and a fully rheonomous affine constraints on 
: 

3n 
Q

   

1

2
2 3 2 3

3, ,

2 1 0 0
0

0
A t q B t q

q
t

q
q q tq tq

q

 
                 




  
        (26) 

with . We here consider a time interval 1m   0,I   . 
Then, it turns out that Assumption 1 holds for (26). One 
geometric representation for (26) can be obtained as fol- 
lows: 

2
2

3

2
0

,

0

t

q
X Y q

t
q

 
  
     
    

 


            (27) 

Calculating an iterated rheonomous bracket for X  
and  above, we obtain Y

 , ,
Y

X Y X Y
t


  


0          (28) 

Hence, we can see that all the iterated rheonomous 
brackets for ,X Y  are 0. Therefore, we have 

 0C span Y                 (29) 

and then it can be confirmed that 

 0dim , 1, ,C t q t I q Q              (30) 

holds. From Theorem 1, we can see that the fully rheo- 
nomous affine constraints (26) are completely integrable, 
that is, there exist two independent first integrals of (26). 

Next, we shall calculate the first integrals of (26) ac- 
cording to Algorithm 2. Reset  and new two 
vector fields that satisfy (17) as 

1 :Y Y

2 3

1 0

0 , 1

0 0

Y Y

   
    
   
      

               (31) 

For the vector fields 1 2 3, , ,X Y Y Y , we calculate their 
flows as 

 
1 1

1

1

32

2 3

22 0 0
1

0
10 0

02
2
0

0 3
3

0 0
2 1 1

0 0
2 3 2
0 0
3 3

, e

e

, ,

YX
t

YY

t t q
q

t q
q

t
q

q

q q

q q

q q






 

 


  



                  
  
   
   

     
   
   


      (32) 

where 
T0 0 0 0

1 2 3q q q q Q   
0t t

 is the initial point at 
the initial time  . Combining the flows (32) like 
(20), 

We have 

 

 
 

31 2 1

1 2 3

1

22 0
2 1

0 0
3 2

0
3

e .

e

YY YX
t t

t t q

t q

t
q


  






    



     
      
 
 
  

  

0

 

(33) 

By solving the equation 1 2 3, , ,X Y Y Y , we calculate the 
inverse mapping of (33) as 

   

3
0
3

21 2 0
1

02 3
20 0

3

log

t

q

q

q t q t q

tq q
q

t q

 0
1

  
 
      
 
 
  

          (34) 

Consequently, we can obtain two independent first in- 
tegrals of (26) as the last two components of (34): 

   
 

22 0
1 1

02 3
2 20 0

3

,

, .

h t q t q t q

tq q
h t q q

t q

0
1   

 
          (35) 
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It can be easily checked that the fully rheonomous af- 
fine constraints (26) can be derived from two independ- 
ent first integrals (35). 

5. Conclusions 

This paper has developed an integrating algorithm in 
order to calculate independent first integrals for the fully 
rheonomous affine constraints in the completely inte- 
grable case. We can say that the proposed integrating 
algorithm is useful and has the application potentiality 
for various research fields. 

Future work includes development of integrating algo- 
rithm for partially integrable fully rheonomous affine 
constraints, applications of the algorithm to real systems, 
and extensions to more general classes of constraints. 
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