
Applied Mathematics, 2013, 4, 33-39
Published Online December 2013 (http://www.scirp.org/journal/am)
http://dx.doi.org/10.4236/am.2013.412A004

Open Access AM

Asynchronous Approach to Memory Management in
Sparse Multifrontal Methods on Multiprocessors

Alexander Kalinkin, Konstantin Arturov
ZAO Intel/AO, Novosibirsk, Russia

Email: Alexander.a.kalinkin@intel.com

Received October 27, 2013; revised November 27, 2013; accepted December 4, 2013

Copyright © 2013 Alexander Kalinkin, Konstantin Arturov. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the
owner of the intellectual property Alexander Kalinkin, Konstantin Arturov. All Copyright © 2013 are guarded by law and by SCIRP
as a guardian.

ABSTRACT

This research covers the Intel® Direct Sparse Solver for Clusters, the software that implements a direct method for solv-
ing the Ax = b equation with sparse symmetric matrix A on a cluster. This method, researched by Intel, is based on
Cholesky decomposition and could be considered as extension of functionality PARDISO from Intel® MKL. To achieve
an efficient work balance on a large number of processes, the so-called “multifrontal” approach to Cholesky decompo-
sition is implemented. This software implements parallelization that is based on nodes of the dependency tree and uses
MPI, as well as parallelization inside a node of the tree that uses OpenMP directives. The article provides a high-level
description of the algorithm to distribute the work between both computational nodes and cores within a single node,
and between different computational nodes. A series of experiments shows that this implementation causes no growth
of the computational time and decreases the amount of memory needed for the computations.

Keywords: Direct Solver; Distributed Data; OpenMP and MPI

1. Introduction

The paper describes a direct method based on Cholesky
decomposition for solving the equation Ax = b with
sparse symmetric matrix A. The positive-definite matrix
A can be represented in terms of LLT decomposition; in
case of an indefinite matrix, the decomposition is LDLT,
where the diagonal matrix D can be amended with extra
“penalty” for additional stability of the decomposition. To
achieve an efficient work balance on a large number of
processes, the so-called “multifrontal” approach to Cho-
lesky decomposition is proposed for the original matrix.

The multifrontal approach was proposed in the papers
[1,2] and successfully used in implemented algorithms
[2-9]. The decomposition algorithm implementation con-
sists of several stages. The initial matrix is subject to a
reordering procedure [10-14] to represent it in the form
of a dependency tree. The number of existing reordering
algorithm is quite huge and the main aim of implementa-
tion such algorithms is to achieve good width of tree (to
obtain better scalability) and increase fill-in of computed
L matrix. We choose metis algorithm [15] as foundation

of our project. Then the symbolic factorization takes
place where the total number of nonzero elements is
computed in LLT. Then a factorization of the permuted
matrix in the LLT form takes place [4-5,7].

This work is devoted to Intel® Direct Sparse Solver for
Clusters package. This package implements paralleliza-
tion based on nodes of the dependency tree using MPI as
well as parallelization inside the node of tree using
OpenMP directives. A variant of MPI-parallelization of
Cholesky decomposition can be found in [3,7].

However, as it has been written before, such algo-
rithms are based on representing initial matrix as “elimi-
nation-tree” representation (or assembly tree in terms of
[1]) with number of leafs equal to number of process. In
case number of processes became huge, the saturation of
this representation could arrange. By saturation, we mean
case “small” height of leafs and lower-level nodes of tree.
To prevent this situation, we divided each process on
several threads. So, in our case, number of leafs become
smaller, and as a result, saturation arrange later. But, to
achieve a good overall performance, we also need to
propose approach of handle elements of matrix by dif-

A. KALINKIN, K. ARTUROV 34

ferent threads in each process. This paper describes main
approaches of handle elements of matrix by different
processes and describes our implementation of Cholesky
decomposition in one node of tree by combination of
processes/threads. The proposed algorithm is based on
PARDISO functionality from Intel® MKL [16] and may
be considered as expansion of it on computers with dis-
tributed memory.

The paper is organized as follows: Section 2 provides
a brief description of the reordering step and describes
parallel algorithms to distribute the work between both
computational nodes and cores within a single node. Sec-
tion 3 briefly describes the algorithm distributing a tree
node between different computational nodes and pro-
poses our version of handle elements of factorized matrix
by different processes with using OpenMP approach on
each process. Section 4 demonstrates a series of experi-
ments that shows dependence working time of imple-
mented algorithm of number of processes/threads and de-
pendence peak of memory size needed for a process dur-
ing algorithm working of number of processes.

2. Main Definitions and Algorithms

There are 2 general ways of solving system of linear
equations—iterative and direct algorithms. The iterative
algorithms can be more perspective but to implement
they effectively one need to know information about ma-
trix, like spectral analyses or differential equation which
correspondent to system. Commonly this information can
be achieved. On the other hand direct method could be
applied for any matrix and spectral property of matrix
can depend on obtained solution only. The Cholesky de-
composition is the one of the direct methods.

In a general case, the algorithm of Cholesky decompo-
sition can be presented in the following way:

L = A
for j = 1,size_of_matrix
{for j = 1,i
{L(i,j) = L(i,j)-L(i,k)L(k,j), k = 1,j-1 (1)
if (i==j) L(i,j) = sqrt(L(i,j)
if (i>j) L(i,j) = L(i,j)/L(j,j)
}

}

Here A is a symmetric, positive-define matrix and L is
the resulted lower-triangular matrix. If the initial matrix
has a lot of zero elements (such kind of a matrix is called
sparse), this algorithm can be rewritten in a more effi-
cient way called multifrontal approach.

Suppose we have a sparse symmetric matrix A Figure
1(a) where each grey block is in turn a sparse sub-matrix
and each white one is a zero matrix. Using reordering
algorithm procedures [15], this matrix can be reduced to
the pattern as in Figure 1(b).

(a) (b)

Figure 1. (a), (b) Non-zero patterns of original matrix and
after reordering step.

A reordered matrix is essentially more convenient for
computations than the initial one since Cholesky de-
composition can start simultaneously from several entry
points (for the matrix from Figure 1(b), 1st, 2nd, 4th and
5th rows of the matrix L can be calculated independently.

To be precise, a non-zero pattern of the matrix L in
Cholesky decomposition is calculated at the symbolic
factorization step before the main factorization step
(stage). At this stage, we know the structure of the origi-
nal matrix A after the reordering step and can calculate
the non-zero pattern of the matrix L. At the same stage,
the original matrix A stored in the sparse format is ap-
pended with zeros so that its non-zero pattern matches
completely that of the matrix L. Henceforth, we will not
distinguish the non-zero patterns of the matrices A and L.
Moreover, it should be mentioned here that elements of
the matrix L in the rows 3 and 6 can be computed only
after the respective elements in the rows 1, 2 and 4, 5 are
computed. The elements in the 7th row can be computed
at last. This allows us to construct the dependency tree
[3,4,7,8]—a graph where each node corresponds to a sin-
gle row of the matrix and each graph node can be com-
puted only if its (nodes on which it depends) are com-
puted. Deeper algorithm with pseudo code of distribution
nodes of tree between processes can be finding in [13].
The dependency tree for the matrix is given in the Figure
2(a) (the number in the center of a node shows the re-
spective row number). For our example, an optimal dis-
tribution of the nodes between the computational proc-
esses is given in the Figure 2(b), where the first bottom
level of the nodes belongs to the processes with the
numbers 0, 1, 2, the second level belongs to 0, 2, 4, the
third belongs to 0, 4, 8,···, etc.

To compute elements of LLT decomposition within a
node Z of the dependency tree, it is necessary to compute
the elements of LLT decomposition in the nodes on
which Z depends (its sub-trees). We call an update pro-
cedure to bring already computed elements to the node Z
(actually, this procedure takes the elements from the sub-
trees of Z multiplied by themselves and subtracted from
elements of Z, so the main pr blem here is in a different o

Open Access AM

A. KALINKIN, K. ARTUROV

Open Access AM

35

process 3 process 2 process 1 process 0

Figure 2. (a) Dependency tree sample; (b) Dependency tree sample distribution among processes.

non-zero pattern of Z and its sub-trees. The 4th line of
the algorithm (1) completes this operation with different
L(i,k) being placed into different nodes of the tree, the
last step is to calculate LLT decomposition of elements
placed into node Z. Algorithm (2) describes an imple-
mentation of the above mentioned piece of the global
decomposition in terms of a pseudo-code:

for current_level = 1, maximal_level
{Z = node number that will be updated by this process

for nodes of the tree with level smaller than the cur-
rent_level

{prepare an update of Z by multiplying elements of
LLT decomposition elements lying within the current
node (2) by themselves;}

send own part of update of Z from each process to
process which stores Z;

on process that stores Z compute LLT elements of Z}

Consider in details an implementation of the algo-
rithms called “compute elements of Z” and “prepare an
update”.

Each tree node in turn can be represented as a sub-tree
or as a square symmetric matrix. To use algorithm (2),
one needs to implement LLT decomposition of each node
on a single computational process. To compute Cholesky
decomposition of each node of the tree, a similar algo-
rithm could be implemented on a single computational
process with several threads. If the number of threads is
equal to the number of nodes of the tree on the bottom
level, then LLT factors for each node from the very bot-
tom level of the tree are calculated by a single thread, on
the next level each node can be calculated by 2 threads,
on the next one by 4 threads, etc. However, such an algo-
rithm becomes inefficient for the top nodes of the initial
tree. Instead, Olaf Schenk suggested some modification
of the standard algorithm of Cholesky decomposition for
sparse symmetric matrices. The standard LLT decompo-
sition for sparse symmetric matrices can be described as
follows:

for row = 1, size_of_matrix
{for column = 1, row

{S = A[row, column]
for all non-zero elements in the row before the col-

umn, S = S – A[row, element]*A[element, column]; (3)
If column<row A[row, column] = S/A[column, col-

umn]
else A[row, column] = S1/2;
}

}

In the paper [9], the following modification of algo-
rithm (3) for the computers with shared memory is pro-
posed. Each computational thread sequentially selects a
row or a set of k rows with similar structure (such set of
rows is called supernode) supr, for which the following
operations are performed.

for column = 1, supr
{if column is not computed - wait, otherwise do

{A[supr,*] = A[supr,*] – A[column, *]*A[column,
column];}
}

A[supr, supr] = (A[supr, supr])1/2; (4)
// 1/2 means Cholesky decomposition of a dense matrix
that can be computed with Lapack functions
A[supr, supr + k, ···, n] = A[supr, supr + k,· ··, n] * inv
(A[supr, supr)], where inv(B) mean inverse matrix B−1;

In his paper, Olaf Schenk applies the algorithm to the
entire matrix. In this paper, we apply it to the tree nodes
only. Namely this provides an efficient Cholesky de-
composition for a dependency tree node of the initial
matrix.

The aforementioned Algorithm (4) describes an im-
plementation of the procedure в “compute elements” in
terms of the algorithm (2). The procedure “prepare an
update” differs only in a sense that each process modifies
zero columns with the structure similar to A[supr,*]
rather than A[supr,*] itself. After each process computes
its update performing simple summation, we obtain
A[supr,*] from which the computed elements of LLT
decomposition have been already deduced.

Thus, we have described the main steps of algorithm
(2). It has a number of drawbacks, however. First, the
number of elements of the matrix L in each process
differs significantly (for instance in the Figure 2(b), the
process 0 stores 3 tree nodes, whereas processes 1 and 3
have only one each). As a result, many processes may

A. KALINKIN, K. ARTUROV 36

stay idle expecting the next task to work on. The size of
the memory necessary for each process to store elements
of the matrix L differs drastically. Following the idea of
algorithm 2, it can be demonstrated that all processes
compute an update first, they start transferring data
afterwards. This is inefficient since at this time the ma-
jority of processes are idle again. To avoid the idle time
and distribute elements of LLT-factors between processes
more evenly, we propose an algorithm described in the
next Section.

3. Asynchronous Execution of Processes

To avoid issues with uneven distribution of the elements
of the matrix L, we propose a distribution method as in
Figure 3 (digits in the decagons indicate the link of a
node with a given process).

Figure 3 demonstrates the same elimination tree as in
Figure 2 with the elements from each node of the tree
being distributed in different manner between computa-
tional processes. At each tree level but the first (bottom)
one, the elements of the matrix L are stored on several
processes, e.g., at the second level all supernodes are
distributed between two processes, at the third one—be-
tween four processes, etc. Supernodes from each node of
the tree are distributed between n processes as follows: if
the total number of supernodes in a certain tree node is m,
then the first group of m1 supernodes belongs to the first
process, the next group of m2 supernodes—to the second
process, etc. Here m1 + m2 + ··· + mn = m. Note that the
numbers m1, m2, ···, mn may vary that allows one to ad-
just them in order to provide better performance of the
overall algorithm. Then Algorithm 2 is modified so that
each process computes its part of the tree node Z. How-
ever, this idea does not provide a solution to the problem
of keeping processes busy during the computations.
Moreover, the problem becomes even bigger since paral-
lel computation of the elements of the matrix L in a sin-
gle tree node is virtually impossible—almost all super-
nodes in a single tree node are normally dependent on
each other.

Note that each process can be executed by a modern
computational node and, therefore, the node can consist
of several dozens of individual computational threads.

Figure 3. Distribution of nodes among processes.

For individual processes to send/receive the data and
carry out the computations, we designate one thread in
each process to be a “postman”. A “postman” is a thread
responsible for data transfer between the processes. Let
us consider how algorithm 3 changes.

3.1. Prepare an Update

As it was stated in the Section 2, the Algorithm “prepare
an update” is a modification of the Algorithm 4. As was
mentioned before, to calculate LLT factors from node Z
of the elimination tree we need to calculate all LLT fac-
tors from its sub-trees and take them into account during
computations of LLT factors of node Z. In general case,
however, the node of the tree Z and its sub-tree are stored
on different computational processes, so we cannot do it
straightforwardly (node Z and its sub-tree have different
non-zero pattern, for example). To resolve the issue, the
following algorithm is proposed: Each computational
process i allocates matrix Zi with the same non-zero pat-
tern as the matrix corresponding to the node Z and fills it
in with zero elements. Then, all elements from the sub-
trees stored on the process i are taken into account in the
matrix Zi as if Zi is Z (4th line in the Algorithm 1). Fur-
ther, the computed matrices Zi are collected on the re-
quired process. Considering that we separated a post-
man thread, there is no need to compute an update first,
and send it later, so computations and data transfers can
be interleaved.

if thread is a postman thread
{Open a recipient to get updates

for supr in A_loc
{if supernode supr is computed, send it to the re-

spective process;
else wait until supernode is computed;

}
Else (5)
{create A_loc(all elements in Z)

for supr in A_loc
{ if column on the current process

A_loc[supr,*] = A_loc[supr,*] – A[column, *] *
A[column, column];

}
}

It is apparent that having decreased the number of the
threads involved in the computations we increased the
total time of “update” computations in each process.
Nevertheless, the experiments with a big number of
threads show that the computational time increases in-
significantly. It is also important to note that despite of
the increase of the computation time to do the necessary
“update”, the transfer of the computed pieces between
processes overlaps with these computations. Therefore,

Open Access AM

A. KALINKIN, K. ARTUROV 37

the total time spent in the new algorithm is less compared
to the Algorithm 4.

3.2. Compute Elements of a Tree Node

It is much more interesting to consider a more compli-
cated algorithm of computing the elements of the matrix
L in a single node of the tree provided that this node is
distributed among several processes. Let the elements of
the node Z including the elements of the dependent
sub-trees (children) that are not processed yet be distrib-
uted as it is shown in the Figure 4, i.e. the first group of
supernodes belongs to the first process, and the second
group—to the second one, etc. So, each computational
process stores only “grey” supernodes.

It can be clearly seen that with such a distribution only
the process 0 can start the computations. Thus, the first
supernode can only be computed within it. However,
after the supernode computation is done, it can be used
by the computational threads of the process 0 for other
(dependent) supernodes, second it can be sent by the
postman thread to other processes, which in turn can use
it in their (dependent) supernodes (see the Figure 5,
where blue arrows indicate communications between the
processes, the green ones—the update of the supernodes
on each process with the supernode received from the
process number 0).

With this example, it is apparent that if each process
has more than 3 computational threads, some threads will
simply lack a supernode to process, so making a postman
out of one computational thread will have little effect on
the overall efficiency if the thread count is big enough.
Of course, one supernode can be processed with several
threads, but this is not going to be considered in this pa-
per.

4. Numerical Experiments

All numerical experiments in this paper were carried on

process 0 process 1 process 2 process 3

Figure 4. Supernode distribution among the processes.

process 0 process 1 process 2 process 3

Figure 5. Computational flow.

the Infiniband*-linked cluster consisting of 16 computa-
tional nodes; each node contains two Intel® Xeon®
X5670 processors (12 cores in total) with 48Gb of RAM
per node. The variable number of the computational
threads within a node is created, i.e. only part of totally
available threads is working within the nodes in the most
cases.

4.1. Scaling of Computational Time

For this experiment, we selected either 7-diagonal matrix
resulted from the approximation of a Helmholtz equation
on a uniform grid with a positive coefficient (specific
Helmholtz coefficient value is not crucial here since it
has no effect on the matrix structure and only the accu-
racy of the solution obtained depends on it), or the matrix
generated from the oil-filtration problem. The number of
degrees of freedom (NDOF) for the first matrix is about
398 K elements, for the second one is about 1.7 M, and
the number of nonzero elements (NNZ) in each matrix is
15.7 M and 12 M, respectively.

The exact solution corresponds to unit vector – array
with all elements equal to 1. Need to underline that per-
formance of whole algorithm doesn’t depend on choos-
ing rhs.

Figures 6-7 show acceleration of Intel®Direct Sparse
Solver for Clusters code on a different number of proc-
esses compared to the same program launched on 1 MPI
process with 2 OpenMP threads on different matrices.
The colored lines correspond to a different number of
OpenMP threads used in the code. It can be seen from
the Figures that the execution time reduces in all cases
with the increase of the number of threads and processes.
It can be readily seen that sometimes even super-linear
acceleration takes place depending on the number of
OpenMP threads that can be easily explained from the
nature of the algorithm one thread is used to send& re-
ceive data and rather often it falls out of the computa-
tions. For example, in the case of 2 threads, one thread is
the postman and the other is the computational one, in

0

Number of MPI precesses (1 per HW node)

NDOF = 398 K, NNZ = 15.7 M
Time scalability (higher is faster)

S
pe

ed
-u

p
vs

.M
P

I
=

 8
, O

M
P

=
 2

 c
on

fi
gu

ra
ti

on

OMP=2
OMP=4

OMP=8

OMP=12

8 16 421

5

10

15

20

25

Figure 6. Intel® direct sparse solver for clusters scalability
of time.

Open Access AM

A. KALINKIN, K. ARTUROV 38

0

Number of MPI precesses (1 per HW node)

NDOF = 1.7 M, NNZ = 12 M
Time scalability (higher is faster)

S
pe

ed
-u

p
vs

.M
P

I
=

 8
, O

M
P

=
 2

 c
on

fi
gu

ra
ti

on

OMP=2

OMP=4

OMP=8

OMP=12

8 16 4 2 1

5

10

15

20

25

30

35

40

Figure 7. Intel ® direct sparse solver for clusters scalability
of time.

the case of 4 threads, one thread is the postman and 3
others are computational ones.

Based on the Figures, it can be concluded that it is rec-
ommended to exploit the computational threads on the
node to the maximum and it is not recommended to have
several computational processes per one node. From the
Figure 6, it is apparent that the acceleration of the com-
bination 2 MPI x 8 OpenMP is larger than 4 MPI x 4
OpenMP, that in turn, is larger than 8 MPI x 2 OpenMP.
This perfectly matches the architecture features imposed
by the modern computer systems, namely, the growing
number of cores (threads) per computational node. Need
to underline that in case of 1 MPI process SMP Pardiso
functionality from Intel MKL 10.3.5 [16] have been used.
So we can conclude that MPI version of proposed algo-
rithm works better than corresponded SMP version on
one node.

4.2. Memory Scaling Per Node

We use the same matrices as before for the testing pur-
poses. In the Figures 8-9, the maximal memory size
needed for a computational node depending on the num-
ber of nodes is presented.

Memory size that Intel® Direct Sparse Solver for
Clusters needs for every computational node barely de-
pends on the number of computational threads on it.
Therefore, we present the data for the number of threads
equal to 12 only. It is apparent that the memory size that
every process needs demonstrates inverse dependence on
the number of processes (for the second matrix, the
memory required decreased 5 times for 16 processes vs.
1 process). If the computational cluster has insufficient
memory per node, it is still possible to solve the system
of linear equations using Intel® Direct Sparse Solver for
Clusters package increasing the number of nodes in the
cluster. An example of this will be shown in the fol-
lowing paragraph.

8 16
0

Number of MPI precesses (1 per HW node)

NDOF = 1.7 M, NNZ = 12 M
Absolute memory per node scalability

M
ax

 m
em

or
y

pe
r

no
de

, G
b

4 21

(Lower is better)

1

2

3

4

5

6

7

Figure 8. Intel® direct sparse solver for clusters memory
scalability.

8 16
0
2
4

6

8

10

12
14

16
18

Number of MPI precesses (1 per HW node)

NDOF = 1.7 M, NNZ = 12 M
Absolute memory per node scalability

M
ax

 m
em

or
y

pe
r

no
de

, G
b

4 21

(Lower is better)

Figure 9. Intel® direct sparse solver for clusters memory
scalability.

4.3. Solving a Huge System of Linear Equations

In this paragraph, we chose a matrix of size 5.8 M with
more than half a billion non-zero elements for the ex-
periment. Thanks to Intel® Direct Sparse Solver for Clus-
ters memory scaling, we can solve this system on 8+ MPI
processes. Note that almost 40 GB of memory is required
per process in case of 8 MPI processes. For 16 processes,
29 GB of memory is only required (see Figure 10-11).

In Figures 10-11, the comparison of computational
time with the configuration 8 MPI x 2 OpenMP is pre-
sented. It is clear that even for such a big matrix size and
big number of MPI processes, Intel® Direct Sparse
Solver for Clusters shows good scalability both in terms
of OpenMP threads and MPI processes.

5. Conclusion

Within the frameworks of multifrontal approach, we
proposed an efficient algorithm implementing all stages
of Cholesky decomposition inside the node of the de-
pendency tree for all processes on a distributed memory
machine. This approach is implemented in Intel® Direct
Sparse Solver for Clusters package, and numerical

Open Access AM

A. KALINKIN, K. ARTUROV

Open Access AM

39

[2] J. W. H. Liu, “The Multifronal Method for Sparse Matrix
Solution: Theory and Practice,” Siam Review, Vol. 34, No.
1, 1992, pp. 82-109. http://dx.doi.org/10.1137/1034004

8 16
0

Number of MPI precesses (1 per HW node)

NDOF = 5.8 M, NNZ = 500 M
Scalability of (computational) time

S
pe

ed
-u

p
vs

.M
P

I
=

 8
, O

M
P

=
 2

 c
on

fi
gu

ra
ti

on

1

2

3

4

5

6

7

8

OMP=2
OMP=4

OMP=8
OMP=12

[3] P. R. Amestoy, I. S. Duff and C. Vomel, “Task Schedul-
ing in an Asynchronous Distributed Memory Multifrontal
Solver,” SIAM Journal on Matrix Analysis and Applica-
tions, Vol. 26, No. 2, 2005, pp. 544-565.
http://dx.doi.org/10.1137/S0895479802419877

[4] P. R. Amestoy, I. S. Duff, S. Pralet and C. Voemel,
“Adapting a Parallel Sparse Direct Solver to SMP Archi-
tectures,” Parallel Computing, Vol. 29, No. 11-12, 2003,
pp. 1645-1668.
http://dx.doi.org/10.1016/j.parco.2003.05.010

Figure 10. Intel® direct sparse solver for clusters time scal-
ability, a huge system.

[5] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S.
Pralet, “Hybrid Scheduling for the Parallel Solution of
Linear Systems”, Parallel Computing, Vol. 32, No. 2,
2006, pp. 136-156.
http://dx.doi.org/10.1177/109434209300700105

8 16
0

5
10
15

20
25

30
35

40
45

Number of MPI precesses (1 per HW node)

NDOF = 5.8 M, NNZ = 500 M
Scalability of the total memory needed per node

M
ax

 m
em

or
y

pe
r

no
de

, G
b

[6] P. R. Amestoy and I. S. Duff, “Memory Management
Issues in Sparse Multifrontal Methods on Multiproces-
sors,” The International Journal of Supercomputer Ap-
plications, Vol. 7, 1993, pp. 64-82.

[7] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster,
“A Fully Asynchronous Multifrontal Solver Using Dis-
tributed Dynamic Scheduling,” SIAM Journal on Matrix
Analysis and Applications, Vol. 23, No. 1, 2001, pp. 15-
41. http://dx.doi.org/10.1137/S0895479899358194

[8] M. Bollhofer and O. Schenk, “Combinatorial Aspects in
Sparse Direct Solvers,” GAMM Mitteilungen, Vol. 29,
2006, pp. 342-367.

Figure 11. Intel® direct sparse solver for clusters memory
scalability, a huge system.

[9] O. Schenk and K. Gartner, “On Fast Factorization Pivot-
ing Methods for Sparse Symmetric Indefinite Systems,”
Technical Report, Department of Computer Science,
University of Basel, 2004.

experiments show good scaling in computational time—
proportional to the number of computational nodes used
and the number of threads within them. Such scaling can
be achieved only by scaling all substeps of Cholesky
decomposition. The main issue on this algorithm, fac-
torization of node of tree by several processors, has been
implemented via approach presented in this paper. Be-
sides, this algorithm reduces the requirement for the
memory size used by the algorithm on a single node
when the number of processes grows. The experiments
made the confirmation of it.

[10] G. Karypis and V. Kumar, “Parallel multilevel graph
partitioning,” Processing of 10th International Parallel
Symposium, 1996, pp. 314-319.

[11] G. Karypis and V. Kumar, “A Parallel Algorithm for
Multilevel Graph Partitioning and Sparse Matrix Order-
ing,” Journal of Parallel and Distributed Computing, Vol.
48, 1998, pp. 71-85.
http://dx.doi.org/10.1006/jpdc.1997.1403

[12] K. Schloegel, G. Karypis and V. Kumar, “Parallel Multi-
level Algorithms for Multi-Constraint Graph Partitioning”
Euro-Par 2000 Parallel Processing, 2000, pp. 296-310

6. Acknowledgements [13] A. Pothen and C. Sun, “A Mapping Algorithm for Paral-
lel Sparse Cholesky Factorization,” SIAM: SIAM Journal
on Scientific Computing, Vol. 14, No. 5, 1993, pp. 1253-
1257. http://dx.doi.org/10.1137/0914074

The authors would like to thank Sergey Gololobov for
providing feedback that improved both style and content
of the paper. [14] G. Karypis and V. Kumar, “Parallel Multilevel Graph

Partitioning,” Proceedings of the 10th International Par-
allel Processing Symposium, 1996, pp. 314-319.

REFERENCES [15] Metis, http://glaros.dtc.umn.edu/gkhome/views/metis
[1] I. S. Duff and J. K. Reid, “The Multifrontal Solution of

Indefinite Sparse Symmetric Linear,” ACM Transactions
on Mathematical Software, Vol. 9, No. 3, 1983, pp. 302-
325. http://dx.doi.org/10.1145/356044.356047

[16] MKL, Intel® Math Kernel Library
http://software.intel.com/en-us/intel-mkl

http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1137/1034004
http://dx.doi.org/10.1137/S0895479802419877
http://dx.doi.org/10.1016/j.parco.2003.05.010
http://dx.doi.org/10.1177/109434209300700105
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.1006/jpdc.1997.1403
http://dx.doi.org/10.1137/0914074

