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ABSTRACT 

This research covers the Intel® Direct Sparse Solver for Clusters, the software that implements a direct method for solv-
ing the Ax = b equation with sparse symmetric matrix A on a cluster. This method, researched by Intel, is based on 
Cholesky decomposition and could be considered as extension of functionality PARDISO from Intel® MKL. To achieve 
an efficient work balance on a large number of processes, the so-called “multifrontal” approach to Cholesky decompo- 
sition is implemented. This software implements parallelization that is based on nodes of the dependency tree and uses 
MPI, as well as parallelization inside a node of the tree that uses OpenMP directives. The article provides a high-level 
description of the algorithm to distribute the work between both computational nodes and cores within a single node, 
and between different computational nodes. A series of experiments shows that this implementation causes no growth 
of the computational time and decreases the amount of memory needed for the computations. 
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1. Introduction 

The paper describes a direct method based on Cholesky 
decomposition for solving the equation Ax = b with 
sparse symmetric matrix A. The positive-definite matrix 
A can be represented in terms of LLT decomposition; in 
case of an indefinite matrix, the decomposition is LDLT, 
where the diagonal matrix D can be amended with extra 
“penalty” for additional stability of the decomposition. To 
achieve an efficient work balance on a large number of 
processes, the so-called “multifrontal” approach to Cho-
lesky decomposition is proposed for the original matrix. 

The multifrontal approach was proposed in the papers 
[1,2] and successfully used in implemented algorithms 
[2-9]. The decomposition algorithm implementation con- 
sists of several stages. The initial matrix is subject to a 
reordering procedure [10-14] to represent it in the form 
of a dependency tree. The number of existing reordering 
algorithm is quite huge and the main aim of implementa- 
tion such algorithms is to achieve good width of tree (to 
obtain better scalability) and increase fill-in of computed 
L matrix. We choose metis algorithm [15] as foundation 

of our project. Then the symbolic factorization takes 
place where the total number of nonzero elements is 
computed in LLT. Then a factorization of the permuted 
matrix in the LLT form takes place [4-5,7]. 

This work is devoted to Intel® Direct Sparse Solver for 
Clusters package. This package implements paralleliza- 
tion based on nodes of the dependency tree using MPI as 
well as parallelization inside the node of tree using 
OpenMP directives. A variant of MPI-parallelization of 
Cholesky decomposition can be found in [3,7]. 

However, as it has been written before, such algo- 
rithms are based on representing initial matrix as “elimi- 
nation-tree” representation (or assembly tree in terms of 
[1]) with number of leafs equal to number of process. In 
case number of processes became huge, the saturation of 
this representation could arrange. By saturation, we mean 
case “small” height of leafs and lower-level nodes of tree. 
To prevent this situation, we divided each process on 
several threads. So, in our case, number of leafs become 
smaller, and as a result, saturation arrange later. But, to 
achieve a good overall performance, we also need to 
propose approach of handle elements of matrix by dif- 
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ferent threads in each process. This paper describes main 
approaches of handle elements of matrix by different 
processes and describes our implementation of Cholesky 
decomposition in one node of tree by combination of 
processes/threads. The proposed algorithm is based on 
PARDISO functionality from Intel® MKL [16] and may 
be considered as expansion of it on computers with dis- 
tributed memory. 

The paper is organized as follows: Section 2 provides 
a brief description of the reordering step and describes 
parallel algorithms to distribute the work between both 
computational nodes and cores within a single node. Sec- 
tion 3 briefly describes the algorithm distributing a tree 
node between different computational nodes and pro- 
poses our version of handle elements of factorized matrix 
by different processes with using OpenMP approach on 
each process. Section 4 demonstrates a series of experi- 
ments that shows dependence working time of imple- 
mented algorithm of number of processes/threads and de- 
pendence peak of memory size needed for a process dur- 
ing algorithm working of number of processes. 

2. Main Definitions and Algorithms 

There are 2 general ways of solving system of linear 
equations—iterative and direct algorithms. The iterative 
algorithms can be more perspective but to implement 
they effectively one need to know information about ma- 
trix, like spectral analyses or differential equation which 
correspondent to system. Commonly this information can 
be achieved. On the other hand direct method could be 
applied for any matrix and spectral property of matrix 
can depend on obtained solution only. The Cholesky de- 
composition is the one of the direct methods. 

In a general case, the algorithm of Cholesky decompo- 
sition can be presented in the following way: 

L = A 
for j = 1,size_of_matrix 
{for j = 1,i 
{L(i,j) = L(i,j)-L(i,k)L(k,j), k = 1,j-1         (1) 
if (i==j) L(i,j) = sqrt(L(i,j) 
if (i>j) L(i,j) = L(i,j)/L(j,j) 
} 

} 

Here A is a symmetric, positive-define matrix and L is 
the resulted lower-triangular matrix. If the initial matrix 
has a lot of zero elements (such kind of a matrix is called 
sparse), this algorithm can be rewritten in a more effi- 
cient way called multifrontal approach. 

Suppose we have a sparse symmetric matrix A Figure 
1(a) where each grey block is in turn a sparse sub-matrix 
and each white one is a zero matrix. Using reordering 
algorithm procedures [15], this matrix can be reduced to 
the pattern as in Figure 1(b). 

  
(a)                              (b) 

Figure 1. (a), (b) Non-zero patterns of original matrix and 
after reordering step. 
 

A reordered matrix is essentially more convenient for 
computations than the initial one since Cholesky de- 
composition can start simultaneously from several entry 
points (for the matrix from Figure 1(b), 1st, 2nd, 4th and 
5th rows of the matrix L can be calculated independently. 

To be precise, a non-zero pattern of the matrix L in 
Cholesky decomposition is calculated at the symbolic 
factorization step before the main factorization step 
(stage). At this stage, we know the structure of the origi- 
nal matrix A after the reordering step and can calculate 
the non-zero pattern of the matrix L. At the same stage, 
the original matrix A stored in the sparse format is ap- 
pended with zeros so that its non-zero pattern matches 
completely that of the matrix L. Henceforth, we will not 
distinguish the non-zero patterns of the matrices A and L. 
Moreover, it should be mentioned here that elements of 
the matrix L in the rows 3 and 6 can be computed only 
after the respective elements in the rows 1, 2 and 4, 5 are 
computed. The elements in the 7th row can be computed 
at last. This allows us to construct the dependency tree 
[3,4,7,8]—a graph where each node corresponds to a sin- 
gle row of the matrix and each graph node can be com- 
puted only if its (nodes on which it depends) are com- 
puted. Deeper algorithm with pseudo code of distribution 
nodes of tree between processes can be finding in [13]. 
The dependency tree for the matrix is given in the Figure 
2(a) (the number in the center of a node shows the re- 
spective row number). For our example, an optimal dis- 
tribution of the nodes between the computational proc- 
esses is given in the Figure 2(b), where the first bottom 
level of the nodes belongs to the processes with the 
numbers 0, 1, 2, the second level belongs to 0, 2, 4, the 
third belongs to 0, 4, 8,···, etc. 

To compute elements of LLT decomposition within a 
node Z of the dependency tree, it is necessary to compute 
the elements of LLT decomposition in the nodes on 
which Z depends (its sub-trees). We call an update pro- 
cedure to bring already computed elements to the node Z 
(actually, this procedure takes the elements from the sub- 
trees of Z multiplied by themselves and subtracted from 
elements of Z, so the main pr blem here is in a different  o  
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process 3  process 2  process 1  process 0 

Figure 2. (a) Dependency tree sample; (b) Dependency tree sample distribution among processes. 
 
non-zero pattern of Z and its sub-trees. The 4th line of 
the algorithm (1) completes this operation with different 
L(i,k) being placed into different nodes of the tree, the 
last step is to calculate LLT decomposition of elements 
placed into node Z. Algorithm (2) describes an imple- 
mentation of the above mentioned piece of the global 
decomposition in terms of a pseudo-code: 

for current_level = 1, maximal_level 
{Z = node number that will be updated by this process 

for nodes of the tree with level smaller than the cur- 
rent_level 

{prepare an update of Z by multiplying elements of 
LLT decomposition elements lying within the current 
node (2) by themselves;} 

send own part of update of Z from each process to 
process which stores Z; 

on process that stores Z compute LLT elements of Z} 

Consider in details an implementation of the algo- 
rithms called “compute elements of Z” and “prepare an 
update”. 

Each tree node in turn can be represented as a sub-tree 
or as a square symmetric matrix. To use algorithm (2), 
one needs to implement LLT decomposition of each node 
on a single computational process. To compute Cholesky 
decomposition of each node of the tree, a similar algo- 
rithm could be implemented on a single computational 
process with several threads. If the number of threads is 
equal to the number of nodes of the tree on the bottom 
level, then LLT factors for each node from the very bot- 
tom level of the tree are calculated by a single thread, on 
the next level each node can be calculated by 2 threads, 
on the next one by 4 threads, etc. However, such an algo- 
rithm becomes inefficient for the top nodes of the initial 
tree. Instead, Olaf Schenk suggested some modification 
of the standard algorithm of Cholesky decomposition for 
sparse symmetric matrices. The standard LLT decompo- 
sition for sparse symmetric matrices can be described as 
follows: 

for row = 1, size_of_matrix 
{for column = 1, row 

{S = A[row, column] 
for all non-zero elements in the row before the col- 

umn, S = S – A[row, element]*A[element, column];  (3) 
If column<row A[row, column] = S/A[column, col- 

umn] 
else A[row, column] = S1/2; 
} 

} 

In the paper [9], the following modification of algo- 
rithm (3) for the computers with shared memory is pro- 
posed. Each computational thread sequentially selects a 
row or a set of k rows with similar structure (such set of 
rows is called supernode) supr, for which the following 
operations are performed. 

for column = 1, supr 
{if column is not computed - wait, otherwise do 

{A[supr,*] = A[supr,*] – A[column, *]*A[column, 
column];} 
} 

A[supr, supr] = (A[supr, supr])1/2;                (4) 
// 1/2 means Cholesky decomposition of a dense matrix 
that can be computed with Lapack functions 
A[supr, supr + k, ···, n] = A[supr, supr + k,· ··, n] * inv 
(A[supr, supr)], where inv(B) mean inverse matrix B−1; 

In his paper, Olaf Schenk applies the algorithm to the 
entire matrix. In this paper, we apply it to the tree nodes 
only. Namely this provides an efficient Cholesky de- 
composition for a dependency tree node of the initial 
matrix. 

The aforementioned Algorithm (4) describes an im- 
plementation of the procedure в “compute elements” in 
terms of the algorithm (2). The procedure “prepare an 
update” differs only in a sense that each process modifies 
zero columns with the structure similar to A[supr,*] 
rather than A[supr,*] itself. After each process computes 
its update performing simple summation, we obtain 
A[supr,*] from which the computed elements of LLT 
decomposition have been already deduced. 

Thus, we have described the main steps of algorithm 
(2). It has a number of drawbacks, however. First, the 
number of elements of the matrix L in each process 
differs significantly (for instance in the Figure 2(b), the 
process 0 stores 3 tree nodes, whereas processes 1 and 3 
have only one each). As a result, many processes may 



A. KALINKIN, K. ARTUROV 36 

stay idle expecting the next task to work on. The size of 
the memory necessary for each process to store elements 
of the matrix L differs drastically. Following the idea of 
algorithm 2, it can be demonstrated that all processes 
compute an update first, they start transferring data 
afterwards. This is inefficient since at this time the ma- 
jority of processes are idle again. To avoid the idle time 
and distribute elements of LLT-factors between processes 
more evenly, we propose an algorithm described in the 
next Section. 

3. Asynchronous Execution of Processes 

To avoid issues with uneven distribution of the elements 
of the matrix L, we propose a distribution method as in 
Figure 3 (digits in the decagons indicate the link of a 
node with a given process). 

Figure 3 demonstrates the same elimination tree as in 
Figure 2 with the elements from each node of the tree 
being distributed in different manner between computa- 
tional processes. At each tree level but the first (bottom) 
one, the elements of the matrix L are stored on several 
processes, e.g., at the second level all supernodes are 
distributed between two processes, at the third one—be- 
tween four processes, etc. Supernodes from each node of 
the tree are distributed between n processes as follows: if 
the total number of supernodes in a certain tree node is m, 
then the first group of m1 supernodes belongs to the first 
process, the next group of m2 supernodes—to the second 
process, etc. Here m1 + m2 + ··· + mn = m. Note that the 
numbers m1, m2, ···, mn may vary that allows one to ad- 
just them in order to provide better performance of the 
overall algorithm. Then Algorithm 2 is modified so that 
each process computes its part of the tree node Z. How- 
ever, this idea does not provide a solution to the problem 
of keeping processes busy during the computations. 
Moreover, the problem becomes even bigger since paral- 
lel computation of the elements of the matrix L in a sin- 
gle tree node is virtually impossible—almost all super- 
nodes in a single tree node are normally dependent on 
each other. 

Note that each process can be executed by a modern 
computational node and, therefore, the node can consist 
of several dozens of individual computational threads. 
 

 

Figure 3. Distribution of nodes among processes. 

For individual processes to send/receive the data and 
carry out the computations, we designate one thread in 
each process to be a “postman”. A “postman” is a thread 
responsible for data transfer between the processes. Let 
us consider how algorithm 3 changes. 

3.1. Prepare an Update 

As it was stated in the Section 2, the Algorithm “prepare 
an update” is a modification of the Algorithm 4. As was 
mentioned before, to calculate LLT factors from node Z 
of the elimination tree we need to calculate all LLT fac- 
tors from its sub-trees and take them into account during 
computations of LLT factors of node Z. In general case, 
however, the node of the tree Z and its sub-tree are stored 
on different computational processes, so we cannot do it 
straightforwardly (node Z and its sub-tree have different 
non-zero pattern, for example). To resolve the issue, the 
following algorithm is proposed: Each computational 
process i allocates matrix Zi with the same non-zero pat- 
tern as the matrix corresponding to the node Z and fills it 
in with zero elements. Then, all elements from the sub- 
trees stored on the process i are taken into account in the 
matrix Zi as if Zi is Z (4th line in the Algorithm 1). Fur-
ther, the computed matrices Zi are collected on the re-
quired process. Considering that we separated a post- 
man thread, there is no need to compute an update first, 
and send it later, so computations and data transfers can 
be interleaved. 

if thread is a postman thread 
{Open a recipient to get updates 

for supr in A_loc 
{if supernode supr is computed, send it to the re-

spective process; 
else wait until supernode is computed; 

} 
Else                                        (5) 
{create A_loc(all elements in Z)  

for supr in A_loc 
{ if column on the current process 

A_loc[supr,*] = A_loc[supr,*] – A[column, *] * 
A[column, column]; 

} 
} 

It is apparent that having decreased the number of the 
threads involved in the computations we increased the 
total time of “update” computations in each process. 
Nevertheless, the experiments with a big number of 
threads show that the computational time increases in- 
significantly. It is also important to note that despite of 
the increase of the computation time to do the necessary 
“update”, the transfer of the computed pieces between 
processes overlaps with these computations. Therefore, 
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the total time spent in the new algorithm is less compared 
to the Algorithm 4. 

3.2. Compute Elements of a Tree Node 

It is much more interesting to consider a more compli- 
cated algorithm of computing the elements of the matrix 
L in a single node of the tree provided that this node is 
distributed among several processes. Let the elements of 
the node Z including the elements of the dependent 
sub-trees (children) that are not processed yet be distrib- 
uted as it is shown in the Figure 4, i.e. the first group of 
supernodes belongs to the first process, and the second 
group—to the second one, etc. So, each computational 
process stores only “grey” supernodes. 

It can be clearly seen that with such a distribution only 
the process 0 can start the computations. Thus, the first 
supernode can only be computed within it. However, 
after the supernode computation is done, it can be used 
by the computational threads of the process 0 for other 
(dependent) supernodes, second it can be sent by the 
postman thread to other processes, which in turn can use 
it in their (dependent) supernodes (see the Figure 5, 
where blue arrows indicate communications between the 
processes, the green ones—the update of the supernodes 
on each process with the supernode received from the 
process number 0). 

With this example, it is apparent that if each process 
has more than 3 computational threads, some threads will 
simply lack a supernode to process, so making a postman 
out of one computational thread will have little effect on 
the overall efficiency if the thread count is big enough. 
Of course, one supernode can be processed with several 
threads, but this is not going to be considered in this pa- 
per. 

4. Numerical Experiments 

All numerical experiments in this paper were carried on 
 

 
process 0             process 1             process 2             process 3 

Figure 4. Supernode distribution among the processes. 
 

 
process 0            process 1            process 2            process 3 

Figure 5. Computational flow. 

the Infiniband*-linked cluster consisting of 16 computa- 
tional nodes; each node contains two Intel® Xeon® 
X5670 processors (12 cores in total) with 48Gb of RAM 
per node. The variable number of the computational 
threads within a node is created, i.e. only part of totally 
available threads is working within the nodes in the most 
cases. 

4.1. Scaling of Computational Time 

For this experiment, we selected either 7-diagonal matrix 
resulted from the approximation of a Helmholtz equation 
on a uniform grid with a positive coefficient (specific 
Helmholtz coefficient value is not crucial here since it 
has no effect on the matrix structure and only the accu- 
racy of the solution obtained depends on it), or the matrix 
generated from the oil-filtration problem. The number of 
degrees of freedom (NDOF) for the first matrix is about 
398 K elements, for the second one is about 1.7 M, and 
the number of nonzero elements (NNZ) in each matrix is 
15.7 M and 12 M, respectively. 

The exact solution corresponds to unit vector – array 
with all elements equal to 1. Need to underline that per- 
formance of whole algorithm doesn’t depend on choos- 
ing rhs. 

Figures 6-7 show acceleration of Intel®Direct Sparse 
Solver for Clusters code on a different number of proc- 
esses compared to the same program launched on 1 MPI 
process with 2 OpenMP threads on different matrices. 
The colored lines correspond to a different number of 
OpenMP threads used in the code. It can be seen from 
the Figures that the execution time reduces in all cases 
with the increase of the number of threads and processes. 
It can be readily seen that sometimes even super-linear 
acceleration takes place depending on the number of 
OpenMP threads that can be easily explained from the 
nature of the algorithm one thread is used to send& re- 
ceive data and rather often it falls out of the computa- 
tions. For example, in the case of 2 threads, one thread is 
the postman and the other is the computational one, in 
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Figure 6. Intel® direct sparse solver for clusters scalability 
of time. 
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Figure 7. Intel ® direct sparse solver for clusters scalability 
of time. 
 
the case of 4 threads, one thread is the postman and 3 
others are computational ones. 

Based on the Figures, it can be concluded that it is rec- 
ommended to exploit the computational threads on the 
node to the maximum and it is not recommended to have 
several computational processes per one node. From the 
Figure 6, it is apparent that the acceleration of the com- 
bination 2 MPI x 8 OpenMP is larger than 4 MPI x 4 
OpenMP, that in turn, is larger than 8 MPI x 2 OpenMP. 
This perfectly matches the architecture features imposed 
by the modern computer systems, namely, the growing 
number of cores (threads) per computational node. Need 
to underline that in case of 1 MPI process SMP Pardiso 
functionality from Intel MKL 10.3.5 [16] have been used. 
So we can conclude that MPI version of proposed algo- 
rithm works better than corresponded SMP version on 
one node. 

4.2. Memory Scaling Per Node 

We use the same matrices as before for the testing pur- 
poses. In the Figures 8-9, the maximal memory size 
needed for a computational node depending on the num- 
ber of nodes is presented. 

Memory size that Intel® Direct Sparse Solver for 
Clusters needs for every computational node barely de- 
pends on the number of computational threads on it. 
Therefore, we present the data for the number of threads 
equal to 12 only. It is apparent that the memory size that 
every process needs demonstrates inverse dependence on 
the number of processes (for the second matrix, the 
memory required decreased 5 times for 16 processes vs. 
1 process). If the computational cluster has insufficient 
memory per node, it is still possible to solve the system 
of linear equations using Intel® Direct Sparse Solver for 
Clusters package increasing the number of nodes in the 
cluster. An example of this will be shown in the fol- 
lowing paragraph. 
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Figure 8. Intel® direct sparse solver for clusters memory 
scalability. 
 

8 16
0
2
4

6

8

10

12
14

16
18

Number of MPI precesses (1 per HW node) 

NDOF = 1.7 M, NNZ = 12 M 
Absolute memory per node scalability 

M
ax

 m
em

or
y 

pe
r 

no
de

, G
b 

4 21

(Lower is better) 

 

Figure 9. Intel® direct sparse solver for clusters memory 
scalability. 

4.3. Solving a Huge System of Linear Equations 

In this paragraph, we chose a matrix of size 5.8 M with 
more than half a billion non-zero elements for the ex- 
periment. Thanks to Intel® Direct Sparse Solver for Clus- 
ters memory scaling, we can solve this system on 8+ MPI 
processes. Note that almost 40 GB of memory is required 
per process in case of 8 MPI processes. For 16 processes, 
29 GB of memory is only required (see Figure 10-11). 

In Figures 10-11, the comparison of computational 
time with the configuration 8 MPI x 2 OpenMP is pre- 
sented. It is clear that even for such a big matrix size and 
big number of MPI processes, Intel® Direct Sparse 
Solver for Clusters shows good scalability both in terms 
of OpenMP threads and MPI processes. 

5. Conclusion 

Within the frameworks of multifrontal approach, we 
proposed an efficient algorithm implementing all stages 
of Cholesky decomposition inside the node of the de- 
pendency tree for all processes on a distributed memory 
machine. This approach is implemented in Intel® Direct 
Sparse Solver for Clusters package, and numerical  
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