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ABSTRACT 

The liver comprises cell layers of hepatocytes called trabeculae, which are separated by vascular sinusoids. Under- 
standing the structure of hepatic trabeculae and liver sinusoids in hematoxylin and eosin (HE)-stained liver specimens is 
important for the differential diagnosis of liver diseases. In this study, we develop an approach to extracting liver sinu- 
soids from HE-stained images. The proposed approach involves: 1) a new orientation-selective filter (OS filter) for edge 
enhancement and image denoising, 2) the clustering of image pixels to identify candidate sinusoids, and 3) a classifica-
tion procedure that discards unlikely candidates and selects the final sinusoid areas. Experimental studies using a data-
base of 16 images with a resolution of 512 × 512 pixels showed that the proposed approach could segment liver sinu-
soid pixels with 81% of specificity and 94% of sensitivity. A comparison with a method based on bilateral filters 
showed that this method improved the sensitivity for all images with an average improvement of 4% and no difference 
in specificity. The results were presented to a group of pathologists and they confirmed that the images were highly 
representative of the tissue morphology features. 
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1. Introduction 

During conventional histopathology, samples of abnor- 
mal tissues are removed from body, placed in a fixative 
to prevent decay, and stained with dyes to highlight cer- 
tain features of interest. Later, the highlighted features 
are inspected by pathologists using microscopes. The 
goal of visual inspection is to identify the manifestations 
of disease, such as cell atypia and malignant neoplasm. 
The results of these subjective inspections are used to 
identify appropriate therapeutic procedures. 

Recent advances in whole-slide imaging technology 
mean that high resolution images of tissues can be ac- 
quired using specialized hardware and these images are 
used at conferences, for educational purposes, and in 
telepathology. Computer-aided diagnosis is also expected 
to make a major contribution to the quantification of 
digital images. 

In recent years, there have been many reports of patho- 
logical image analysis methods. Many of these previous 
studies were focused on the automatic grading of gastric 
cancer [1] and prostate cancer [2-4]. In the area of 
pathological image segmentation, a cell nucleus extrac- 
tion competition is held each year at the International 
Conference on Pattern Recognition (ICPR) [5]. However, 
there have been few reports of the automatic grading of 
hepatocellular carcinoma (HCC). In [6] and [7], auto- 
matic grading was conducted according to the Edmond- 
son classification, where results were reported with good 
precision based on characteristic parameters related to 
the cell nucleus. The histopathological features of cell 
nuclei have been used in most conventional image analy- 
sis methods. However, other characteristics are also im- 
portant for the diagnosis of HCC, including the morpho- 
logical features of tissues, such as sinusoids and hepatic 
trabeculae; cellular features such as the cytoplasm and  
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nuclei; as well as lymphocytes and red blood cells [8]. 
Thus, the more accurate evaluation of hepatic lesions 
demands the extraction and quantification of structures 
such as trabeculae and fibrous cells. In the present study, 
we developed a method for extracting sinusoids, which is 
a basic approach to structure recognition. 

Hepatic cells are normally arranged in a radial pattern 
that originates from a central vein. This radial structure is 
called a hepatic trabecula. Any irregularities in the he- 
patic trabeculae are important for the histological classi- 
fication of HCC. Trabeculae are normally made of a sin- 
gle row of cells, but sometimes they exhibit increased 
thickness and the formation of multiple rows of cells 
during the development of structural atypia in carcinoma. 
The specific mixture of thick and thin hepatic trabeculae 
indicates the stage of progression in cancer. 

In the present study, we attempted to extract sinusoidal 
regions. Sinusoids run parallel to the trabecula and they 
provide nutrition to cells. Therefore, analyzing the struc- 
ture of sinusoids is crucial for the extraction of morpho- 
logical features from hepatic trabeculae. The direct ex- 
traction of morphological features from hepatic trabecu- 
lae is a very difficult task because the trabecula structure 
includes various objects such as the cell nucleus, cyto- 
plasm, and cell membrane. 

2. Liver Sinusoids 

As shown in Figure 1, liver tissues mainly comprise a 
hepatic lobule and Glisson’s sheath. The lobule contains 
hepatic cells, sinusoids, and blood capillaries. Most of 
the hepatic cells are arranged in trabeculae and the blood 
capillaries run between the cells. The sinusoidal wall 
between the sinusoids and hepatic cells comprises endo- 
thelial cells. The boundary region is relatively distinct, 
but substances are exchanged between hepatic cells, as  
 

 

Figure 1. Seven major structures in a hematoxylin and 
eosin-stained hepatic histological specimen: (1) interhepatic 
bile duct, (2) hepatic artery, (3) hepatic portal vein, (4) fiber, 
(5) nucleus, (6) sinusoid, and (7) hepatic trabecula. 

well as sinusoidal blood through the holes or gaps be- 
tween endothelial cells. The sinusoids have a lumen 
structure and hematoxylin and eosin (HE)-stained sinu- 
soid specimens are only weakly colored. However, it 
does not form a full cavity because it contains secretions, 
blood, and endothelial cells. In some cases, the sinusoids 
are squeezed and their lumens are invisible in the corre- 
sponding pathological specimen. In particular, the lumen 
is often obscure in moderately or poorly differentiated 
lesions. In the present study, we extracted sinusoids with 
a lumen structure [9]. 

3. Methodology 

In general, sinusoids appear white in color because they 
are not stained by hematoxylin or eosin, but they still 
include endothelial cells, red blood cells, bodily secre- 
tions, and other substances. The boundary between the 
sinusoid and the hepatic cytoplasm is sometimes obscure 
and a newly developed orientation-selective (OS) filter is 
used as a pretreatment to highlight the structures in the 
sinusoid and the cytoplasm. The flowchart shown in 
Figure 2 illustrates our methodology. After enhancing 
the margins of sinusoids using the OS filter, the candi- 
date sinusoidal regions are extracted by the expectation- 
maximization algorithm (EM algorithm). Next, we cal- 
culate the histogram features of the candidate regions and 
classify them using a previously trained linear support 
vector machine (SVM). 

3.1. Orientation-Selective Filter 

The sinusoid wall cells, such as the endothelial cells on 
the boundary between the sinusoid and the hepatic cells, 
appear to be arranged in smooth curves but they have 
interruptions and voids, as described above. Therefore, if 
a sinusoid region is divided along this boundary during 
image processing, it will be difficult to determine the 
correct boundary between the sinusoid and the hepatic 
cell in the interrupted section. Thus, an OS filter is used 
to connect the interrupted section to the interrupted 
boundary in a smooth manner, thereby defining the bor- 
derline. Another possible method for image segmentation 
is a bilateral filter [10], which is a powerful method for 
smoothing while preserving edges. However, it has no 
effect on connecting broken boundaries. A suitable filter 
should smooth the boundary in the direction of the boun- 
dary, while retaining the edges in the direction perpen- 
dicular to the boundary. Thus, an OS filter was designed 
specifically for this purpose because no other filters have 
this functionality. 

The proposed OS filter is a selective version of a bar 
filter [11] that performs an affine transformation in the 
orientation of the brightness gradient. If an original im- 
age is assumed to be I(x,y), the brightness gradient ori- 
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Figure 2. Flowchart of the proposed method: Section 3.1 is the pre-processing stage, Section 4.1 is the clustering process, and 
Section 4.4 is the discarding process. 
 
entation of each pixel is determined using Equation (1): 
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In the present study, a filter was used with Gaussian 
smoothing of 11 × 1 lines, where NS is the image size. 
The length of the filter is determined by the actual gaps 
being connected. In the present study, the filter was de- 
signed so it was two pixels shorter on either side com- 
pared to the size used to calculate the intensity gradient. 
If the filter is too large, intensity information other than 
that related to the sinusoid boundary would be included 
in the calculation. If there are two or more gradient ori- 
entations, these gradient orientations are calculated and 
integrated. The convolution-like operation in Equation (3) 
is performed using all of the RGB color channels. 

where θ(x,y) is the gradient orientation and m(x,y) is the 
gradient magnitude. The pixel values in the green chan- 
nel of the RGB color space are used because the differ- 
ence between the sinusoids and cytoplasm is relatively 
high [12]. Computing the orientation of a single pixel 
using only its four-connected neighborhood might be 
unstable, so we compute the pixel-wise orientation val- 
ues in three steps. First, we calculate the gradient of each 
pixel using centered 1D point derivatives with [−1, 0, +1] 
masks. Next, we quantize the gradient magnitudes into 
18 equally spaced values between 0 and 170. Finally, we 
calculate the weighted gradient orientation histogram 
around each pixel in a neighborhood of 15 × 15 pixels. 
The size of the window is determined by the size of the 
object for which the intensity gradient is obtained. In the 
present study, this was slightly larger than the thickness 
of the sinusoid. The weights are the gradient magnitudes. 
The largest value in the weighted histogram is assigned 
to the center pixel. If multiple peaks in the histogram 
exceed 80% of the maximum, they are all assumed to be 
valid. This protects the structures of the edge crossings. 
This threshold is a parameter and when it is high, it gives 
greater priority to local edge enhancement, but more 
protection to edge crossings when it is low. Next, a bar 
filter is affine-transformed in the gradient orientation of 
each pixel and applied using Equation (3). This filter is 
similar to convolution, but the kernel depends on the 
weighted gradient orientation (θ) histogram described 
above. 

3.2. Effectiveness of the Orientation-Selective 
Filter 

The filter used in the present study changes its convolu- 
tion kernel using spatial information, so the effects are 
also regarded as varying with the image properties. Thus, 
we examined whether the filter properties were suitable 
for sinusoid extraction from the hepatic histopathological 
tissue images considered in this study. First, the results of 
filtering are shown in Figure 3. Figures 3(a) and (b) 
show the original image and the results obtained by con- 
volution with the OS filter, respectively. Figure 4(b) 
shows the variation in a sinusoid where the gray level 
was obscure or a segment where favorable results were 
obtained compared with the original image (Figure 4(a)). 
Figure 4(c) shows the results obtained with the bilateral 
filter compared with the OS filter, where the cytoplasm 
around the sinusoid is clear, although the boundary be- 
tween the sinusoid and the cytoplasm is obscure. In the      , ,l ,I i j I i j Fc i j   
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(a) 

 
(b) 

Figure 3. Original and filtered images. (a) Original image; 
(b) Orientation-selective filtered image. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Original and filtered images. (a) Original; (b) Ori- 
entation-selective filtered image; (c) Bilateral filtered image. 

results obtained after the application of the OS filter 
(Figure 4(b)), the boundary with the clear cytoplasm 
exhibits deeper pink eosin staining compared with the 
surrounding cytoplasm while the boundary between the 
sinusoid and the hepatic cell is more distinct because the 
sinusoid’s interior secretion is whiter as a consequence of 
smoothing. In addition, information related to the varia- 
tions in concentration from the sinusoid to the cytoplasm 
is conserved. 

4. Extraction of Candidate Sinusoidal 
Regions 

HE-stained specimens mainly contain cell nuclei that 
appear blue due to hematoxylin, cytoplasm that appears 
red due to eosin, and sinusoids that appear white due to a 
lack of chemical reaction. We assumed that the signal 
intensities of the nuclei, cytoplasm, and sinusoids had 
Gaussian distributions in the RGB color space and we 
used the EM algorithm to estimate the corresponding 
class means and variances [13]. 

4.1. Clustering with the EM Algorithm 

The EM algorithm is a well-established method that is 
often used often to estimate the parameters for mixed 
distribution models. In the present study, a mixed normal 
distribution was applied in the RGB color space to esti- 
mate the white region. An RGB feature vector is defined 
as, where N is the number of pixels in the image. The 
Gaussian mixture distribution can be defined using Equa- 
tion (4): 
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where k  is the average, k  is the covariance matrix, 

k  is the distribution weight, and F is the number of 
classes. In this case, the maximum likelihood estimate is 
represented by Equation (5). 
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The estimation process involves an expectation step 
and a maximization step. The expectation step is repre- 
sented by Equation (6) using Bayes’ rule, where i is the 
pixel number and k is the class number of each distribu- 
tion. 
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The maximization step is represented using Equation 
(7). 
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In a test conducted as part of this study, an initial value 
was determined using the k-means method. Sinusoids are 
basically white regions so they should be extracted if an 
appropriate threshold value can be determined. HE- 
stained images have color densities that vary among im- 
ages, however, which means that it is necessary to de- 
termine the threshold as a relative value. In the present 
study, the EM algorithm was used to determine the rela- 
tive threshold with good precision. 

4.2. Eliminating Cell Nuclei from Sinusoids 

Endothelial cell nuclei and blood cells are present within 
the extracted sinusoids. Thus, it is necessary to eliminate 
them before determining the structures of sinusoids. The 
cell nuclei are often isolated in the interiors of the sinu- 
soids because they do not include cytoplasm. Thus, it is 
necessary to eliminate all of the isolated areas within the 
sinusoidal regions. The interior sinusoids are labeled and 
small regions less than or equal to a given size are treated 
as sinusoids. 

4.3. Discarding Unlikely Sinusoid Candidates 

Images of hepatic tissue contain various white structures 
that resemble sinusoids. Examples of these structures are 
cells undergoing ballooning degeneration, clear cells, and 
fat droplets. Ballooning degeneration is a form of cell 
death, which is characterized by a thin cell cytoplasm. 
Clear cells indicate a specific type of carcinoma in the 
liver and these cells lack most of their cytoplasmic con- 
tent, thereby leaving nuclei surrounded by large white 
areas. Fat droplets indicate liver disease and they can be 
observed as round white areas in HE-stained specimens. 

Although the causes and underlying mechanisms of 
these structures are different, their appearance is quite 
similar to sinusoids. Therefore, a procedure that labels all 
of the white regions as sinusoids may produce erroneous 
results. We propose a two-step approach to correct these 
errors and to improve the specificity of the sinusoid seg- 
mentation procedure. After the first step described above, 
the second step involves the classification of sinusoids 
and sinusoid-like structures using a supervised learning 
approach, which is explained in the following subsec- 
tions. 

4.4. Extracting Gray-Level Histogram Features 

The contrast between sinusoids and tissue cytoplasm is 
apparent in the middle regions of the visible spectrum 
because the absorption spectrum of eosin has a peak in 
that region. Therefore, given an 8-bit RGB image I_rgb, 
we initially select the green channel of the image and 
extract four different features from the gray-level histo- 
gram, i.e., the mean, variance, skewness, and kurtosis. 
The contrast between the sinusoid and cytoplasm needs 
to be enhanced to extract the sinusoids. HE staining dyes 
the cytoplasm with eosin and the nucleus with hematoxy- 
lin. A sinusoid contains few cellular tissues and its prop- 
erties are similar to glass areas, which generate the re- 
sults for hematoxylin absorption spectrum shown in Fig- 
ure 5. Figure 5 shows the absorbance levels of the he- 
matoxylin and eosin simple stains, respectively. There 
are major differences between the absorption spectra of 
the sinusoid (glass) and eosin (cytoplasm) at 475 - 580 
nm. Thus, using the green channel helps to distinguish 
eosin sufficiently well to obtain dark areas, which en- 
hances the contrast compared with the sinusoid. This is 
why the green channel is used in this method. If we as- 
sume that the set represents the pixel values of the Green 
channel between 0 and 255 nm, ni represents the number 
of pixels in the gray level i, and N represents the total 
number of pixels in the image, then the probability of a 
pixel occurring at level i is as follows (Equation (8)). 
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Given p(i), the mean (β),variance (v2), skewness (ι), 
and kurtosis(ϖ) of the histogram can be computed as fol- 
lows. 
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Figure 5. Absorbance of HE-stained samples. 
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As shown in Figure 6, ballooning regions exhibit a 
smooth variation in the pink color between the interior 
and exterior regions. During experiments, we dilated the 
initial sinusoid candidates five times using a 3 × 3 struc- 
turing element and we extracted separate features for 
pixels in the original region and pixels in the expanded 
region. Figure 6(b) shows the gray-level histogram fea- 
tures derived from both regions inside the red and green 
lines. Therefore, the number of features was eight. A 
linear SVM was used to reduce the number of candidate 
sinusoid regions based on the gray-level histogram fea- 
tures [14,15]. The classifier was trained using 300 sinu- 
soids and 300 ballooning regions, each of which was 
extracted from another set of HE-stained liver images 
obtained at a magnification of 20×. 

(a)                   (b) 

Figure 6. Difference between a sinusoid and ballooning. (a) 
Original image; (b) Sinusoid and ballooning. 
 
soid and hepatic cell regions are indicated as white and 
black, respectively. The results were shown to a group of 
pathologists and the expert assessments indicated that the 
images obtained were good representations of the tissue 
morphology features in benign Edmondson grade 1 (well 
differentiated) and grade 2 (moderately differentiated) 
tissues. However, non-sinusoidal regions were still ex- 
tracted, such as fatty cells and portal veins. In future 
work, we will aim to eliminate these errors. The eva- 
luation was not performed for grades 3 and 4 because the 
appearances of the sinusoids are completely different in 
these grades. 

5. Experimental 

5.1. Materials 

5.3. Evaluation of the Extraction Accuracy Whole-slide images of surgical liver specimens were 
captured using a 20 microscope objective (Nano Zoomer 
2.0; pixel width = 460 nm) and 967 different regions-of- 
interest (ROIs) with dimensions of 1 × 1 mm were 
selected by a pathologist for further analysis. A patholo- 
gist classified the images according to Edmondson grad- 
ing [16]. Of the 967 ROIs, 551 were labeled as back- 
ground, 80 as grade 1, 247 as grade 2, 64 as grade 3, and 
25 as grade 4. 

The sinusoidal regions extracted using the proposed app- 
roach were compared with the manually extracted sinu- 
soids to determine the accuracy of the automated ex- 
traction method. 

5.3.1. Test Images Used in the Experiment 
To compare the accuracy of the extraction results, the 
manually extracted sinusoidal regions were used in this 
study. Sixteen representative images were selected to 
assess their staining and ballooning features. In HE- 
stained images, the densities of hematoxylin and eosin 
vary according to the state of fixation and staining. The 

5.2. Experimental Results 

Figure 7 shows some of the results obtained from the 
automatically segmented sinusoid images, where the sinu-  
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(a) 

     
(b) 

Figure 7. Results obtained using the proposed method. (a) Background; (b) Edmondson grade 1; (c) Edmondson grade 2. 
 
cytoplasm also has a clear appearance in chronic liver 
disease cells because of glycogen. The manually ex- 
tracted results are shown in Figure 8 and the results ob- 
tained using the proposed method are shown in Figure 9. 

5.3.2. Comparison of the Methods 
We used three metrics to evaluate the pixel-wise segmen- 
tation accuracy, i.e., the sensitivity, specificity, and over- 
lap, which were determined based on the relationships 
shown in Table 1. The sensitivity was calculated as 
TP/(TP + FN), the specificity as TN/(TN + FP), and the 
overlap as TP/(TP + FP + FN), where TP is the number 
of positive cases of sinusoids that were identified correctly, 
TN is the number of negative cases of sinusoids that 
were identified correctly, FP is the number of positive 
cases of sinusoids that were classified incorrectly, and 
FN is the number of negative cases of sinusoids that were 
classified incorrectly. 

5.3.3. Experimental Results 
The evaluation results are shown in Table 2. Using the 
proposed approach, the average sensitivity was 81% and 
the specificity was 94% with the 16 test images. To 
verify the effectiveness of the filtering and candidate 
reduction procedures, we compared the use of these 
treatments and direct clustering with the original images. 
Our results showed that filtering increased the sensitivity 
by 5% and the specificity by 2%. In particular, we ob- 
served the effective acquisition of continuous, smooth 
results on the boundary of the sinusoid (Figure 10(d)). 
Figure 10(c) shows the results obtained by extraction 
using the bilateral filter compared with the proposal me- 
thod. Figure 10(a) shows the original image and Figure 
10(b) shows the results extracted from the original image.  

The effects of feature-based candidate reduction on the 
sensitivity and specificity were as follows. The sensiti- 
vity did not decline because the incorrect deletion of re- 
gions did not occur in the experiment, even after narrow- 
ing. The specificity was 2% higher for the results that 
included incorrectly extracted regions. There was 3% 
higher specificity compared with that before narrowing. 
Thus, narrowing based on the gray-level histogram fea- 
tures provided favorable results, because it increased the 
specificity by 3% without decreasing the sensitivity. 

5.4. Comparison with Other Methods 

Image processing using bilateral filters is widely re- 
cognized as a data smoothing technique that considers 
edges. Bilateral filters are used for preprocessing during 
pathological image segmentation [4]. Thus, we compared 
the proposed method with a bilateral filter. The results 
obtained with the bilateral filter were based on the ex- 
traction of sinusoids with the EM algorithm, which re- 
placed the OS filter during preprocessing. The parame- 
ters of the bilateral filter were standard deviation values 
of σ1 = 3 for the geometric spread, σ2 = 0.1 for the 
photometric spread, and the window size = 10 pixels, 
which supported the identification of edges that were 
sufficiently solid to maintain useful images. Table 3 
shows the evaluation results based on the area ratios. The 
ground truth data were the results obtained by manual 
extraction, which were the same as those used in the 
experimental precision evaluation. Seven images with 
good color conditions were used in the experiment where 
the image size was 2174 × 2174 pixels. Furthermore, the 
area ratios were calculated by weighting the vicinity of 
the edges because there were differences among indivi- 
duals in the manual extraction results. Thus, the vicinity 
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(a)                      (b)                    (c)                      (d) 

       
(e)                      (f)                     (g)                     (h) 

       
(i)                      (j)                     (k)                     (l) 

       
(m)                     (n)                     (o)                      (p) 

Figure 8. Sixteen different HE-stained liver specimens, which were captured using a 20× objective lens. The sinusoids in the 
images were segmented manually and the segmented images were used to evaluate the proposed algorithm. The percentages 
represent the ratio of the sinusoid area relative to the image area. The ratios in the images varied between 8% and 37%. (a) 
19%; (b) 8%; (c) 24%; (d) 16%; (e) 17%; (f) 8%; (g) 10%; (h) 30%; (i) 37%; (j) 25%; (k) 27%; (l) 22%; (m) 24%; (n) 32%; 
(o) 37%; (p) 27%. 
 
edges were counted as 0.5 pixels. The voids in the fi- 
brous regions were not considered during this proce- 
dure, so fibrous regions were excluded from the calcula- 
tions. The results showed that the proposed method im- 
proved the sensitivity for all images with an average im- 
provement of 4% while there was no major difference in 
the specificity. There was a 1% decrease in the specific- 
ity with the proposed method for some images compared 
with the bilateral filter. We also performed an experiment 
where a SVM was used to eliminate unlikely sinusoid 
candidates. The results showed that there was a 1% - 3% 
improvement in the specificity with images that had 
rather clear photographic conditions compared with the 

the OS filter and using a SVM to eliminate unlikely can- 
didates. The green pixels indicate negative results that 
were classified correctly by the SVM, while the red pix- 
els indicate positive results that were classified incor- 
rectly as negative. The proposed method improved the 
average overlapping by 2%. 

6. Conclusions 

original images. Figure 11 shows images obtained with  

oids were extracted to facilitate the In this study, sinus
structural analysis of hepatic histopathological tissue 
images. Our results showed that the area ratio was in- 
creased by 6% using the proposed pretreatment, i.e., the 
OS filter, and the boundary of the sinusoid was extracted 
in a natural manner. Furthermore, narrowing was con- 
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(a)                      (b)                    (c)                      (d) 

       
(e)                      (f)                     (g)                     (h) 

       
(i)                      (j)                     (k)                     (l) 

       
(m)                     (n)                     (o)                      (p) 

Figure 9. Sixteen differen s. he results were 
extracted using the propo

t HE-staine ver specimens, wh ere captured usin 20× objective len
sed method. 

d li ich w g a  T

 

     
(a)                        (b) 

     
(c)                         (d) 

Figure 10. Comparison of the original image iginal image; (b) Results extracted from the 
original image; (c) Result after extraction from ) Result after extraction from the OS-filtered 
image. 

with the filt ages. (a) Or
 the bilateral-filtered image; (d

ered im
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Table 1. Confusion matrix. 

  Ground truth 

 e 
Total 

 Positive Negativ

Algorithm Positive T  TP + FN P FN

Output Negative FP  

TP P FN  

FP TN + TN

 Total  + F  + TN N 

 
Ta va f the ene f the d 
sinusoid segmentation ap sin  imag The 

ecificity and sensitivity values were computed by com- 

+ Discarding 

ble 2. E luation o  effectiv ss o  propose
proach u g 16 test es. 

sp
paring the pixels in the segmentation outputs with the pixels 
in the ground truth data shown in Figure 8. The segmen- 
tation outputs were obtained using three different app- 
roaches: 1) dividing unfiltered images into three clusters; 2) 
dividing filtered images into three clusters; 3) dividing fil- 
tered image into three clusters and discarding unlikely can- 
didates, which were predicted using a support vector ma- 
chine. The values highlighted with a dark gray background 
have the highest sensitivities, the values highlighted with a 
light gray background have the highest specificities, and the 
values highlighted with a mid-light gray background have 
the highest overlaps. 

1) Clustering 
2) Filtering 
+ Clustering 

3) Filtering 
+ Clustering 

 

Sen Spe Ove Sen Spe Sen veOve s Spe O

A 0.73 0.86 0.46 0.7 78 0.83 0.45 0. 7 0.84 0.46

B 0.75 0.85 0.26 0.78 0.83 0.25 0.78 0.91 0.37

C 0.61 0.93 0.50 0.64 0.91 0.50 0.57 0.94 0.47

D 0.65 0.94 0.49 0.66 0.96 0.53 0.63 0.97 0.54

E 0.84 0.77 0.39 0.88 0.73 0.38 0.87 0.86 0.52

F 0.66 0.92 0.35 0.70 0.92 0.37 0.70 0.93 0.40

G 0.72 0.95 0.48 0.78 0.92 0.46 0.78 0.92 0.46

H 0.82 0.95 0.74 0.87 0.94 0.76 0.87 0.94 0.76

I 0.83 0.98 0.80 0.90 0.97 0.85 0.90 0.97 0.85

J 0.75 0.95 0.66 0.77 0.95 0.67 0.76 0.96 0.68

K 0.81 0.96 0.73 0.92 0.95 0.80 0.92 0.95 0.81

L 0.84 0.94 0.70 0.95 0.92 0.74 0.95 0.96 0.82

M 0.88 0.97 0.82 0.95 0.97 0.87 0.95 0.97 0.87

N 0.70 0.96 0.65 0.85 0.95 0.77 0.84 0.95 0.76

O 0.80 0.93 0.72 0.86 0.95 0.79 0.82 0.96 0.77

P 0.88 0.95 0.78 0.90 0.96 0.81 0.88 0.98 0.84

A  ve 0.76 0.92 0.59 0.82 0.91 0.62 0.81 0.94 0.65

Sen = Sensitivity, Spe = Specificity, Ove = Overlap. 

specificity and sensitivity values were computed by com- 
paring the pixels in the segmentation outputs with the pixels 
in the gr  ntation ere 
ob ined differ ches: 1) dividing bi-
lateral-filtered images into three clusters; 2) S- 
filtered g t e us  il  
image into three clusters and discarding unlikely candidates, 
w h  c s  e  
values highlighted k
h s i e  values l  t  

s, and the values 

Table 3. Evaluation of the effectiveness of the proposed sin- 
usoid segmentation approach using seven test images. The 

ound truth data.
 using three 

The segme  outputs w
ta ent approa

 dividing O
 ima es in o thr e cl ters; 3) dividing OS-f tered

hic were predi ted u ing a support vector machin . The
with a dark gr

s, the
ay

 high
 bac

ighted
ground have
 with

 the 
 grayighe t sens tiviti a ligh

background have the highest specificitie
highlighted with a mid-light gray background have the 
highest overlap. 

1) Bilateral 
Filtering 

2) OS Filtering 
3) OS Filtering + 

discarding  

Sen Spe Ove Sen Spe Ove Sens Spe Ove

A 0.80 0.95 0.62 0.83 0.95 0.62 0.82 0.96 0.66

B 0.86 0.97 0.77 0.88 0.97 0.78 0.88 0.99 0.84

C 0.83 0.99 0.77 0.88 0.98 0.80 0.88 0.99 0.82

D 0.87 0.96 0.78 0.91 0.96 0.81 0.91 0.97 0.83

E 0.89 0.98 0.84 0.91 0.98 0.86 0.91 0.98 0.86

F 0.86 0.98 0.79 0.90 0.97 0.81 0.90 0.97 0.81

G 0.87 0.99 0.86 0.91 0.99 0.89 0.91 1.00 0.90

Ave 0.8 8 0.  5 0.97 0.7 89 0.97 0.80 0.89 0.98 0.82

 

 
(a) 

 
(b) 

Figure 11. Comparison between the images obtained using 
the orientation-selective filter and with a support vector 
machine to eliminate unlikely candidates. (a) Result of ex- 
traction from filtered image; (b) Result of extraction from 
discarding and filtered image. 

Open Access                                                                                        OJMI 



M. ISHIKAWA  ET  AL. 154 

ducted based on the gray-level histogram features, or 
primary statistics. Our results showed that this increased 
the specificity by 6% without any reduction in the sensi- 
tivity. Another experiment compared the results obtained 
using an edge-preserving bilateral filter with the conven- 
tional method, which showed that the average sensitivity 
of the proposed method was 3% higher than that with the 
bilateral filter, while the difference in the specificity was 
less than 1%. In addition, the proposed method yielded 
2% of higher overlaps. We confirmed that better results 
were obtained with the proposed method c mpared with 
the bilateral filter based on e experimental area ratios 

 Tabesh, M. Teverovskiy, H.-Y. Pang, V. P. Kumar, D.

. Saidi, “Multifeature Prostate 

 
o

 th
obtained, which was attributable to the effect of linking 
edges along a boundary. Future improvements will in- 
clude handling liver biopsy images, as well as the surgi- 
cal specimens considered in the present study. Liver bi- 
opsies involve collecting cells from the liver by tapping a 
needle into it, which means that the sinusoids tend to be 
distorted by the compression of cells and they are less 
visible. Liver biopsy images are very important because 
they are prepared in greater numbers than surgical 
specimens. 

The proposed method is considered to be effective 
from a perspective of computer diagnostic support in pa- 
thological applications. However, a high level of judg- 
ment is required to determine the morphological proper- 
ties of sinusoids because their diagnosis is based on rela- 
tive differences compared with normal liver cells. Thus, 
this method could provide diagnostic support by making 
quantitative information available to physicians based on 
the structural analysis of sinusoids. In addition, the struc- 
ture of sinusoids is important from an image processing 
perspective. Cells, sinusoids, and stroma are dominant in 
hepatic pathological images, and the extraction of sinu- 
soids provides important information that facilitates the 
recognition of other structures, such as the cells and 
stroma. Furthermore, it may be possible to quantify the 
thickness and structure of cells by extracting the remain- 
ing areas after the sinusoids and stroma have been elimi- 
nated. 
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