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ABSTRACT 

The group, Drazin and Koliha-Drazin inverses are particular classes of commuting outer inverses. In this note, we use 
the inverse along an element to study some spectral conditions related to these inverses in the case of bounded linear 
operators on a Banach space. 
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1. Introduction 

Several of the useful properties of the group, Drazin and 
Koliha-Drazin inverses can be related to their spectral 
characterizations. Some of these can be traced to the pro- 
perty of being commuting outer inverses. 

Let  be the set of bounded linear operators on 
a Banach space 

 B X
X , and let  A B X . We denote the 

range by  A  and the null space of A  by  A . 
Let M  and  be closed subspaces of N X . The out- 

er inverse with prescribed range M  and null space , 
denoted 

N
 2

,M NA  is the unique operator  which satisfi- 
es: 

B

   , ,B BAB B M B N   .  

There is some advantage in prescribing the null space 
and range of an outer inverse by means of a third opera- 
tor. In doing so, we will use the notion of invertibility 
along an element introduced by X. Mary ([1]). We say 
A  is invertible along T  if there exists  B B X  

such that 

       , ,B BAB B T B T      .

A

 

In this case, the inverse along  is unique and we 
write .  

T
TB A 

From  we have that BA and AB are projec- 
tions such that  and  

B BAB

 B A
   B B 

B    . Thus, we are effectively prescribing 
the range of the projection  and the null space of the 
projection 

BA
AB . 

One of the useful properties of a generalized inverse is 

that, although the operator is not invertible, there is a 
subspace for which the reduction of the operator to that 
subspace is indeed invertible: 

Theorem 1. ([2, Theorem 2]) Let  ,A T B X  be 
nonzero operators. The following statements are equiva-
lent. 
1. A  is invertible along T . 
2.  T  is a closed and complemented subspace of 

X ,     A T A  T  is closed such that  
   AT T X    and the reduction  

     :
T

A T A 


T  is invertible. 


Recall an operator A B X


  is said to be group in-
vertible if there exists B B X

, ,
 such that 

.A ABA AB BAB BAB    

In this case, such  is unique and we write B B A   
for the group inverse of A . 

Proposition 2. ([2, Theorem 3]) If  A B X  is in-
vertible along  T B X

T
, then AT and TA are group 

invertible and    A T A

X
T TA 

2

T . 
Example 3. Let    the space of square-sum- 

mable sequences. Let  ,A T B X  be defined by 
 ,2 3 4 5: , , ,Ax x x x x  a n d  .   1 2 3 4, , , , ,x x x x : 0Tx 

Then A  is invertible along  with T TA T‖ . 
In the following section, we study an operator A  

such that A  is invertible along T  with AT TA . 
Then, in Section 3 we study some projections related to 
the outer inverse with prescribed range and null space. 
Finally, in Section 4 we specialize to spectral projections, 
covering results from Dajić and Koliha ([3]). 
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2. Invertibility along a Commuting  
Operator 

Proposition 4. Let A  be invertible along . If T
AT TA , then T TAA A A  . 

Proof. From Proposition 2 we have: 

      .T TAA AT AT AT AT TA TA A A      
 

If A  is invertible along T , then we have the fol-
lowing matrix form ([2]): 

   
 

1

2

0
: ,

0

A T
A

A T

   
     
     





AT
 

where 1A  is invertible and   is a complement of 
, that is, .  T   X T  

When A  and T  commute, we can say a little more:  
Theorem 5. Let A  be invertible along T and 

AT TA . Then there exist an invertible operator 1A  on 
 and an operator  T 2A  on  T  such that 

 
 

 
 

1

2

0
:

0

A T T
A

A T T

    
     
     

 

 
 

and  
1

1 0

0 0
T A

A
 

  
 



Proof. Suppose A  is invertible along T and 
AT TA . Then by Proposition 4 T TAA A  A . Thus, 

since T TAA A  A  is a projection, we have that  

   T TX A A AA    . 

Since  

    T TT A A     A

A

 

and 

    T TT A A      

we also have 

    ,X T T    

and hence we can consider the following matrix decom-
position of A : 

 
 

 
 

1 3

4 2

:
A A T T

A .
A A T T

    
     
     

 

 
 

In this case,    1 :A T T  , 1A x Ax , is in-
vertible. Indeed, to see that it is onto note that since 

     AT T  A T   and  

       T AA AT AT A      TT  , we  

have    T A 
   1

Moreover, since AT TA , subspaces  T  and 
 T  are A -invariant and A  maps  T  onto 
   T  AT  , we get . Thus,  3 4 0A A 

 
   

1

2

:
0

 0A T T
A

A T T

    
    
 


   

1
1 0

0 0
T A

A


 


 and clearly  

 
  
 

 . 

Example 6. Let 2X    the space of square-sum- 
mable sequences. Let  ,A T B X  be defined by 

 2 1: , 2 ,0,0,Ax x x  ,  

 2 1: , ,0,0, .Tx x x 
T

 

Then it is easy to verify that A  is the operator such 
that  

 2 1
1 , ,0,0, .
2

TA x x x   

It is clear that T TAA A A  , but we have 

   1 2 1 2, 2 ,0,0, 2 , ,0,0, .ATx x x x x TAx     

3. Projections 

Commuting outer inverses are naturally linked to projec-
tions. 

Proposition 7. Let  ,A T B X . If A  is invertible 
along  and T AT TA , then there exists a bounded 
projection  P B X  such that A  is invertible along 

. P
Proof. From Theorem 5 we have that if A  is invert-

ible along  and T AT TA , then  

   .X T T    

Thus, there exists a bounded projection  P B X  
such that    P   T  and  P   T  . Hence, 
A  is invertible along . P

For a sort of converse, we give a necessary condition 
in Theorem 9. 

Example 8. An operator A  and a projection  
such that 

P
A  is invertible along  and P AP PA . 

Let  2M   be the set of two by two matrices with 
real entries. Let  2A M   be the (rotation) matrix 
defined by 

1 1
2 2

: ,
1 1
2 2

A

 
 

  
 
  

 

T  and hence  
 A AT  


T . To see that it is also 1-1, let 

  x A T  . Since    TT A   , there exists 
 such that y TX x A

0 T
y

T


T T
. Then,  

A Ax A AA y   A y x  .  

and let  2P M   be the projection defined by 

1 0
: .

0 0
P
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Then, it is easy to check that 

1 0
2

1 0
2

AP

 
 

  
 
  

 is  

group invertible, with group inverse  
2 0

2 0
AP

 
  
  


. 

We have 

  2 0
.

0 0
PA P AP

 
   

 

 
 

Thus, A  is invertible along  but since  P
1 1
2 2

0 0
PA

 


 




, we see AP PA . Notice that  

   AP P  . 
Theorem 9. Let  P B X  be a projection and sup- 

pose  A B X  is invertible along . If  P
   AP   P , then AP 


PA . 

Proof. Since A B X  is invertible along , P A  
has the following matrix form [2, Corollary 1]: 

   
 

1

2

0
: ,

0

A AP
A

A P

   
     
     





P
 

where 1A  is invertible and  is the complement of 
, that is, 


P   X P   . 
Since  P  is a complement for , we can 

take . Then, we have 
 P

P  
 
 

 
 

1

2

0
: ,

0

A P A
A

A P P

   
    
    

 

 

P 



 

Now, suppose    AP   P . From Theorem 1 we  
know that    :  1 P

A A P  AP


  is invertible,  

which implies    AP   P . Thus, 

 
 

 
 

1

2

0
:

0

A P
A .

P

A P P

   
    
    

 

 





 

It follows AP PA . 
Note that the theorem above together with Proposition 

4 implies that if    AP   P , then P PA P PA  . 
However, we can prove: 

Proposition 10. Let  P B X  be a projection, and 
suppose A  is invertible along . Then P P PA P PA  . 

Proof. Using Proposition 4,  

   
    .

P

P

A P PA PP PA P

P AP PP AP PA

 

  





 

 
 

Example 11. An operator  A B X  and a projec-
tion  P B X  such that AP PA  but A  is not 
invertible along . P

Let 2X    and let  ,A P B X  be defined by 

 2 3 40, , , , ,Ax x x x   

 1 2, ,0,0, .Px x x   

Then 

 20, ,0,0, ,APx x   

 20, ,0,0, .PAx x   

  However, the reduction   :
P

A P AP 


 
can not be invertible, and by Theorem 1 A  is not in-
vertible along . P

Theorem 12. Let  P B X  be a projection and 
 A B X  be such that AP P A . Then, A  is invert-

ible along  if and only if P    P  A   and 
   A P  . 

Proof. Suppose A  is invertible along . Since P
       P P P P PA A A A A A        A   and  

from Proposition 4 and the definition of PA  we have 

         .P P PP A A A AA A           

Similarly, from  

       P P P P PA A AA AA A          , 

Proposition 4 and the definition of PA  we get 

         .P P PP A AA A A          A  

Conversely, suppose    P   A  and  
   P  A  . We use Theorem 1. The reduc-

tion      :
P

A P 


 AP  is clearly onto. From 
   A P   and    P P  0 


 we get that 

it is also 1-1.To see that AP  is closed and 
   AP P X    we will show    AP P  . 

It is clear that      AP PA   P . For the other 
inclusion, let  x P . Since    P  A , there 
exists y X  such that x Ay . Then, from 
x Px PAy APy    it follows that  x AP . Thus, 
   P AP  . Finally, it is clear that  P  is 

closed and complemented. Hence A  is invertible along 
. P

4. Spectral Projections 

Recall the spectrum  A  of an operator  A B X  
is the set    tible .:  is not inverI  :A A   

Suppose A  is invertible along  and T AT TA . 
Then we have the matrix form 

 
 

 
 

1

2

0
:

0

A T T
A

A T T

   
 


   

 


  

 

  
. 

From  T  and  T  are invariant under A , 
we have: 

     1 2 .A A A     
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Since 1A  is invertible but A  is not, we know that 
 20 A . 

Note that from    X T  T   and the matrix 
form of A , there exists a projection  such that 

, 
P

    P T    P T   and . Thus, 
without loss of generality, we can suppose 

PA AP
A  is invert-

ible along a projection P . A very important class of 
projections which commutes with A  is a class of spec-
tral projections, which we now discuss. 

The resolvent set  A  of A  is  
   :A A    and for  A 

1

  the resolvent 
function  is  R A

   : .R A A I    

A subset  A   is said to be a spectral set of A  
if  and  are both closed in . For a 
spectral set  of 

  A 



A ,  P A  the spectral projection 

associated with A  is defined by 

   1
: d

2π C
P A R A

i  ,     

where  is a Cauchy contour that separates C   from 
.  A

0


If  is a point of the resolvent set or an isolated point 
of the spectrum  A , then the operator A  is called 
quasipolar. Let A  be quasipolar and let 0  be the 
spectral projection associated with the spectral set 

P
 0 , 

then ([4]): 

   0 0X P P    

Let  Q B X . If    0Q 

n

, then we say that  
is a quasinilpotent operator. Recall tha  is nilpotent 

O  for some  , and nilpotent operators are 
quasinilpotent.  

Q
t

if 
 Q

nQ   

Quasipolar operators are generalized invertible in the 
sense of Koliha: an operator  A B X


 is Koliha-Dra- 

zin invertible if there exists B B X  such that  
 A I AB  is quasinilpotent,  ,B BAB .AB BA  
In this case, by Lemma 2.4 of [5], Koliha-Drazin in- 

verse is unique and we write DB A .  
An operator A  is Koliha-Drazin invertible if and 

only if 0 is an isolated point of  A . If  0 A  is a 
pole of the resolvent of order , then n A  is Drazin in-
vertible with Drazin index . If 0 is a simple pole then 
it is group invertible

n
. 

As noted above, the Koliha-Drazin is a particular case 
when we consider the spectral set  0  . For the gen-
eral case when  is a spectral set such that 0  , 
Dajić and Koliha have defined a generalized inverse and 

studied its properties ([3]). 
Theorem 13. Let  A B X  and  be a spectral 

set for 


A . If 0  then A  is invertible along 
 P A . 

 AP PProof. Let  . Then  and P  P  
are closed and    X P  P  . Now, since  P   

is A -invariant,   P
A  


 and  we have  0

that      :
P

A P 


  P  is invertible. Thus,  

   AP   P  is closed,    AP N P X   and 

     :
P

A P A


  P  is invertible. Therefore, by 

Theorem 1 A  is invertible along . P
Corollary 14. Let  A B X  and  be a spectral 

set for 


A . If 0  then A  is invertible along 
 I P A

Proof. If 
. 

 0 A , then 0  . From the theo-
rem above, A  is invertible along  

     AP A P  I   A . 
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