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ABSTRACT 

We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive 
definite Hermitian matrix. 
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1. Introduction and Results 

By exploiting the general structure of reproducing kernel 
Hilbert spaces, it is possible to prove very interesting 
norm inequalities (see, e.g., [1,2]). A typical result is as 
follows. 

Let  be an N-ply connected regular domain whose 
boundary consists of disjoint analytic Jordan curves. Let 

D

 , 2H D    be analytic Hardy functions with index 
two. Then the following generalised isoperimetric inequ- 
ality holds,  
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Moreover, we can completely describe the cases for 

which we have the equality instead of the inequality here 
above. Without the theory of reproducing kernels, such a 
simple and beautiful inequality could not be derived (see 
[2,3] for the details). 

In this paper we introduce a new inequality. Let  
 be a positive definite Hermitian matrix. 

Let  and let 
 , , 1

n

n i j i j
A a




0 m n   ,

m

m i jA a
, 1i j

 be the restriction 
of mA  to an m  dimensional subspace of . Without 
loss of generality, assume that 

n
mA  is the m  leading 

principal minor of n

m
A . Let 1

nA  and 1
mA  denote the 

inverse of nA  and of mA , respectively. Then we have 
the following results. 

Theorem 1.1 If  and  m 1, , n
nx x x   x  is the 

vector of  defined by m   1, ,m  mx x 
* 1 * 1

x , then  

    .mm m nx A x x A x             (1) 

Here  denotes conjugate transpose. As an immediate 
consequence, one also obtains the following corollary. 

*

Corollary 1.2 If  1
n m

A  is the restriction of the 
matrix 1

nA  to , then  m
 1 1 .m n m

A A              (2) 

Here   denotes the positive definite order, i.e., if 
M  and  are square matrices, we say that N M N  
if N M  is a positive semi-definite matrix. 

We observe that for 2n  , such results can be check- 
ed directly. However, for , the result of Theorem 
1.1 is not intuitive and appears mysterious, at least at first 
glance.  

3n 

2. Proof of the Results 

The proof of Theorem 1.1 is based on the theory of 
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reproducing kernels. Therefore, we begin by introducing 
some notions and results which are used in the sequel. 

2.1. Reproducing Kernels 

Let  be an arbitrary abstract (non-void) set. Let 
 denote the set of all complex-valued functions 

on . A reproducing kernel Hilbert spaces (RKHS for 
short) on the set  is a Hilbert space 

E
 E
E

F

E  EH F  
endowed with a function , which is call- 
ed the reproducing kernel and which satisfies the repro- 
ducing property. Namely we have  

:K E E H

 , for allpK K p p E   H        (3) 

and 

  , pf p f K
H

            (4) 

for all  and for all . We denote by p E


f H
KH E  (or KH ) the reproducing kernel Hilbert space 
 whose corresponding reproducing function is . H K

A complex-valued function  is called 
a positive definite quadratic form function on the set 

, or shortly, positive definite function, if, for an ar- 
bitrary function  and for any finite subset 

:K E E 

E
:X E  

F  of , one has E

     
,

,
p q F

X p X q K p q


 0.         (5) 

By a fundamental theorem, we know that, for any po- 
sitive definite quadratic form function  on , there 
exists a unique reproducing kernel Hilbert space on  
with reproducing kernel 

K E
E

K . So, in a sense, the corres- 
pondence between the reproducing kernel  and the 
reproducing kernel Hilbert space 

K
 KH E  is one to one. 

A simple example of positive definite quadratic form 
function is a positive definite Hermitian matrix. 

Example 2.1 Let  be a set con- 
sisting of  distinct points. Let 

 1 2, , , nE p p p  
n  

, 1

n

n ij i j
A a


  be a 

strictly positive  Hermitian matrix. Let  n n

 1

, 1

n

n ij i j
A b


  denote the inverse of nA . Then the space  

 EF  of the complex valued functions on , endow- 
ed with the inner product 

E
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is a reproducing kernel Hilbert (complex Euclidean) 
space with reproducing kernel  defined by  K

 ,i j jiK p p a  for all . , 1,,i j n

Indeed, the validity of (3) follows by a straightforward 
calculation. To prove (4) we observe that  

       

   

, 1

, 1

, , ,
K An

n

k i ijH E
i j

n

i ij jk k
i j

j kf K p f p b K p p

f p b a f p





 

 




 

for all 1, ,k n   (note that kj jka a ). Thus  
nAH E  

coincides with the reproducing kernel Hilbert space 
 KH E . In particular the norm induced by the product 

 An

,
H E

   coincides with the norm of  KH E . 
We can thus combine the two theories of postitive de- 

finite Hermitian matrices and of reproducing kernels (see 
[4-12]). 

2.2. Restriction of a Reproducing Kernel 

The validity of Theorem 1.1 follows by the properties of 
the restriction of a reproducing kernel in a general setting. 
Let  be a non-empty set and let 0  be a non-empty 
subset of . Let 

E E
E :K E E    be a positive definite 

quadratic form function. Then the restriction 
0 0E E

 of K
K  to 0 0E E  is a positive definite quadratic form 
function on 0 0E E  and the relation between  KH E   
and  

0 0
0

E EKH E  is given by the following statement. 


Proposition 2.1 (Restriction of RKHS) Let  be a 
non-empty set and let 0  be a non-empty subset of . 
Let 

E
E E

:K E E   be a positive definite quadratic form 
function. Then the Hilbert space defined by the positive 
definite quadratic form function 

0 0E E
K


 is given by  

 

      
0 0 0

0 0 : for some
E E

KK E
.H E f E f f f H E


    F                     (6) 

 
Furthermore, the norm of  

0 0
0

E EKH E


 is expressed  

in terms of the norm of  KH E  by the following 
equality, 

   
  0 00 0

min : ,
K KE E

KH E H E E
f f f H E f



   f  

(7) 

which holds for all  
0 0

0
E EKf H E


 . 

See [1] for the details. 

2.3. Proof of Theorem 1.1 

Let ,n m  with 0 m n  . Let  
and 

 1 2, , , nE p p p 
 2 , mp0 1E p , ,p . Let K  be the positive 
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definite quadratic form function on  defined by E
 ,i j jiK p p a
 1, , nx x x 

 for all .  Let  
 and  m . Let 

, 1, ,i j n 
1x x n   mx  , , m 

f  be the function on  defined by E  i if p x  for 
all . Let 1, ,i n 

0E
f f . Then we have  

   KH E

2
,

KH E

* 1
nf f f x A x  and  

      0 0
0 0

mm mH E 
* 1

0 0

2
,

K KE E
H E

E E

f f f x A

* 1
m n

x
 

. Thus (7)  

implies that    
* 1
m mx A x x A x 

m

 . 

3. An Alternative Proof Based on Schur 
Complement 

We provide in this section a direct proof of Theorem 1.1 
based on the properties of the Schur complement (cf., 
e.g., [13]). Let  with 0 . Let n,n m n A  be a 
positive definite Hermitian  matrix and assume 
that  

n n

*
m

n m
n

A B

B A 

 
 
 

A   

where mA  is an  matrix, m m n mA 

B n m
 is an  

 matrix, and  is an   n m n m    m   
matrix. Observe that mA  is positive definite and hence- 
forth invertible. Then the inverse nA  can be written in 
the form  

1 1
1 m m

n
n m

A A
A

 
 



1 * 1 1 1

1 1
n m m n m

m m

S B A BS

A

  


  


  
 


A B

1 *

B

S B

* 1B 

m

n

A

S


 



 

where n m n m m   is the Schur complement 
with respect to m

S A 
A . Since  we also have 

n  which implies that . We now observe 
that the validity of Theorem 1.1 is equivalent to say that 
the matrix 

0nA 
1 0n mS 
 1A  0

M  defined by  
1 1 *

1 * 1 1
m n m m n

n m m n m

A BS B A A BS

S B A S

  

  






mx y

1
m


  1 11
1 0

0 0
mm

n

A
M A


  

   
 









  

is positive semi-definite. Let  and n m

   

* 1 *

* 1

1 * 1

* 1

1 1

1 1
, ,

n m

n m

m m

n m

n m

n m

y S B A

S y

A x y S A x

y S y

S S
x y

S S


 


 

 
 


 

 
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 
 

 

 

 
 
 

 ,

 . 
Then we calculate  

   

 
 
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*

* 1 1 *

* 1 1

** 1

** 1 1
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, ,

m n m

m n m

m n

m n

x y M x y

x A BS B A

x A BS y

B A x S

B A x S

B A x y
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

1
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* 1

m
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1
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m
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x

y

B
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
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(here we understand that x y  * 1 ,mB A x y and  are 
column vectors). Now we observe that  

1 1
1

1 1

1 1

1 1
n m n m

n m
n m n m

S S
S

S S

 
 
 

 

    
       

 

where   denotes the Kronecker product of matrices. It 
is known that the Kronecker product of positive semi- 
definite matrices is positive semi-definite. Now  

1 1
0

1 1

 
  

 

and , hence  1 0n mS 
 

1 1

1 1
n m n m

n m n m

S S

S S

 
 
 
 

 
 
 

 

is positive semi-definite and accordingly  
. Our proof is completed.    *

, ,x y M x y  0

4. Remark 

The results in this paper were given implicitly in the ex- 
tensive paper [14]. However, such results were not expli- 
citly stated in the corresponding Theorem (Ultimate re-
alization of reproducing kernel Hilbert spaces). For 
this reason, we wrote this paper where we clearly present 
our Theorem 1.1. We note that such ideas have arisen to 
our attention while analysing the structure of the theorem 
from the viewpoint of the support vector machine for the 
practical calculation. 
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