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ABSTRACT 

This work uses the canopy height model (CHM) based workflow for individual tree crown delineation from LiDAR 
point cloud data in an urban environment and evaluates its accuracy by using very high-resolution PAN (spatial) and 
8-band WorldView-2 imagery. LiDAR point cloud data were used to detect tree features by classifying point elevation 
values. The workflow includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model, 
generation of hill-shade image and intensity image, extraction of digital surface model, generation of bare earth digital 
elevation model and extraction of tree features. Scene dependent extraction criteria were employed to improve the tree 
feature extraction. LiDAR-based refining/filtering techniques used for bare earth layer extraction were crucial for im-
proving the subsequent tree feature extraction. The PAN-sharpened WV-2 image (with 0.5 m spatial resolution) used to 
assess the accuracy of LiDAR-based tree features provided an accuracy of 98%. Based on these inferences, we conclude 
that the LiDAR-based tree feature extraction is a potential application which can be used for understanding vegetation 
characterization in urban setup. 
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1. Introduction 

Trees in metro and cities contribute significantly to urban 
environmental quality. However, techniques are used to 
assess urban forest resource and their possible impact on 
the regional scale is less explored. To better understand 
the urban forest resource and its numerous values, sur-
veying and mapping individual tree structures help in the 
advancement of the understanding of the urban forest 
structures, improve urban forest policies, offer data for 
prospective inclusion of trees in environmental regula-
tion studies, and determine how urban trees affect the 
urban environment and accordingly enhance environ-
mental quality in urban areas for human health. 

Light detection and ranging (LiDAR) is an active re-
mote sensing technology that evaluates properties of re-
flected light to determine range to a remote object [1]. 
Airborne LiDAR is capable of providing highly accurate 
measurements of vertical features with single pulse, mul- 

tiple pulses, or full waveform. However, its usage is cur-
rently limited because of its high acquisition cost. In 
LiDAR remote sensing, the range to remote object is 
estimated by computing the time delay between broad-
cast of a laser pulse and recognition of the reflected sig-
nal [2]. LiDAR technology is being progressively more 
practiced in ecology, forestry, geomorphology, seismol-
ogy, environmental research and remote sensing because 
of its capability to produce three-dimensional (3D) point 
data with high spatial resolution and better accuracy [1, 
3-8]. LiDAR systems coupled with accurate positioning 
and orientation systems can obtain precise 3D measure-
ments of earth surface in the form of point cloud data by 
using high sampling densities [9]. LiDAR point cloud 
data filtration and interpolation has been a field of re-
search for last many years and thousands of methods 
have been introduced for this process. In case of LiDAR 
filtration and interpolation, two assumptions are signifi-
cant: 1) earth surface is continuous and smooth, and 2) *Corresponding author. 
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the nei- ghboring point data are correlated. LiDAR in-
terpolation methods are broadly classified into two cate-
gories: 1) deterministic methods, and 2) geostatistical 
methods. Deterministic methods assume that each input 
LiDAR point has a local weight with the spatial distance 
[10], whereas the geostatistical methods are based on the 
spatial distance as well as the spatial correlation for in-
terpolating the LiDAR point data [11]. Inverse distance 
weighted (IDW) method is based on linear weighted ar-
rangement of set of sample points, where higher weight 
is assigned to the points which are spatially closer to the 
sample point [10]. Hence, IDW performs better for 
densely distributed LiDAR data where cloud points are 
closely and evenly spaced [12]. Spline interpolation em-
ploys a numerical function to approximate the interpo-
lated values that diminish the large curvature of the sur-
face considering all the data points [13]. On the other 
hand, Krigging interpolation takes into account the spa-
tial correlation between LiDAR data points for generat-
ing continuous surface. Moreover, the Kriging interpola-
tion is based on mutual spatial distance between the Li-
DAR data points, and its efficiency is verified by semi- 
variogram [11,14,15]. 

Individual tree feature extraction has significant ap-
plications in forestry, ecology, and environmental studies 
[16-18]. The structural characteristics of individual tree 
feature such as tree height, crown diameter, canopy 
based height, diameter at breast height (DBH), biomass, 
and species type can be derived after an accurate extrac-
tion of individual tree [17,19,20]. The traditional meth-
ods for extracting individual tree features include field 
inventory and aerial photograph interpretation. However, 
traditional methods have certain limitations such as re-
quirement of intensive field work and financial implica-
tions which can be overcome by using airborne LiDAR 
[21] and very high resolution satellite images. Field in-
ventories are generally labour-intensive, time-consuming, 
and limited by geographical accessibility [7]; optical ae-
rial photography does not directly provide 3D tree struc-
ture information [16]. The ground-based LiDAR is capa-
ble of capturing detailed 3D measurement of tree struc-
ture; however, it is less effective for large geographical 
extent. 

LiDAR has been widely applied in forestry [22-29], 
and it is found to be useful in mapping individual trees in 
complex forests [8,16-18,26]. Research on exploiting 
LiDAR point cloud data to evaluate vegetation structures 
has been progressed from a forest scale to individual tree 
level [30]. This is evidently encouraged by the develop-
ments in LiDAR technology, resulting in higher pulse 
rates and increased LiDAR point densities. Therefore, the 
semiautomatic extraction of single tree (delineation) has 
become a fundamental approach in forestry research [31]. 
Computing tree attributes at high spatial scales is essen-

tial to monitor terrestrial natural resources [32]. However, 
not many studies have focused on individual tree level 
feature extraction [29]. One of the main challenges of 
this research is result validation and accuracy assessment 
for individual extracted tree measurements, where de-
tailed field inventory and/or very high resolution satellite 
image are/is necessary. The high spatial density LiDAR 
point cloud data noticeably reveal the structure of indi-
vidual trees, and hence provide better prospect for more 
accurate tree feature extraction and vegetation structure 
parameters. The high density LiDAR has been success-
fully used to demarcate the whole structure of individual 
tree [33-36]. There are numerous methods proposed to 
demarcate individual trees by using airborne LiDAR 
point cloud data. Popescu and Wynne [26] employed a 
local maximum filtering method to extract individual 
trees. Tiede et al. [37] practiced a similar local maximum 
filtering method to recognize tree tops and developed a 
region growing algorithm to extract tree features. Chen et 
al. [16] proposed a watershed segmentation to isolate 
individual trees, where the tree tops extracted by local 
maxima were used as markers to improve the accuracy. 
Koch et al. [18] extracted tree features by synergetic us-
age of pouring algorithm and knowledge based assump-
tions on the structure of trees. Korpela et al. [19] used a 
multi-scale template matching approach for tree feature 
extraction using elliptical templates to represent tree 
models. Falkowski et al. [38] proposed the spatial wave-
let analysis to semiautomatically verify the spatial loca-
tion, height, and crown diameter of individual tree fea-
tures from LiDAR point cloud data. These algorithms 
extract individual tree features by using the LiDAR de-
rived canopy height model (CHM). CHM is a raster im-
age interpolated from LiDAR cloud points indicating the 
top of the vegetation canopy. Tree detection and tree 
crown delineation from Airborne LiDAR have been 
mostly utilizing the CHM. However, CHM can have in-
herent errors and uncertainties, e.g., spatial error intro-
duced during the interpolation from the point cloud to 
raster [39], which may reduce the accuracy of tree fea-
ture extraction. Therefore, new methods to delineate in-
dividual tree features from the LiDAR point cloud neces-
sitate development and validation. Morsdorf et al. [40] 
employed the k-mean clustering algorithm to delineate 
individual tree features from the point cloud, but their 
accuracy depended on seed points extracted from the 
local maxima of a digital surface model. Lee et al. [41] 
developed an adaptive clustering approach to segmenting 
individual trees in pine forests from the raw LiDAR point 
cloud data. This method is based on the concept of wa-
tershed segmentation and it requires adequate training 
data for supervised learning. 

In this study, we used a method for individual tree de-
lineation based on canopy height model (CHM) from the 
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high resolution airborne LiDAR point cloud data. To 
investigate the algorithm’s effectiveness in extracting 
individual trees, we used very high resolution remote 
sensing data from WorldView-2 satellite. This study 
aims to assess the accuracy of individual tree extraction 
while using LiDAR by visual interpretation of trees onto 
very high resolution WorldView-2 image. Figure 1 
shows LiDAR point cloud. 

2. Study Area and Geospatial Data 

2.1. Study Area and Environment 

In order to investigate and illustrate the effectiveness of 
LiDAR based tree feature extraction, we selected the part 
of San Francisco city, California, United States of Amer-
ica (37˚44"30'N, 122˚31"30'W and 37˚41"30'N, 122˚ 
20"30'W), as a test scene. San Francisco is situated on 
the West Coast of the USA at the north ending of the San 
Francisco Peninsula and comprises of significant exten-
sion of the Pacific Ocean and San Francisco Bay within 
its margins. Several islands—Treasure Island, Yerba 
Buena Island, Alameda Island, Farallon Island, Red Rock 
Island, and Angel Island—are essential parts of the city. 
The mainland area within the city constitutes roughly 
600 km2. There are more than 50 hills within city boun- 
daries. There are more than 220 parks maintained in the 
San Francisco by Recreation & Parks Department, con-
taining thousands of native trees and plants. QuickBird 
satellite imagery of the study area captured on 11th No-
vember 2007 is shown in Figure 2. 

2.2. Urban Forest Structure of San Francisco  

An analysis of trees reveals that the urban forest of San 
Francisco has an approximately 669,000 trees [42]. Trees 
cover about 11.9% of San Francisco; shrubs cover 6.9% 
of the city. Dominant ground cover types include imper-
vious surfaces (excluding buildings) (e.g., driveways, 
sidewalks, parking lots) (42.5%), buildings (26.1%), and 
herbaceous (e.g., grass and gardens) (19.3%). Trees hav-
ing diameters less than 6 in are reported to be 51.4% of 
the total tree population. The three most common species 
 
 

 

Figure 1. LiDAR based point cloud representation over the 
extent of study area. 

 

Figure 2. QuickBird PAN-sharpened satellite image over 
the study area. 
 
in the urban forest are blue gum eucalyptus (15.9%), 
Monterey pine (8.4%), and Monterey cypress (3.8%) 
[42]. The highest density of trees is found in the open 
space (36.9 trees per acre), followed by the institutional 
land (24.0 trees per acre) and street right of ways (23.7 
trees per acre) [42]. San Francisco’s urban forests consist 
of a mixture of native tree species and exotic tree species. 
Hence, urban forests often have a tree diversity that is 
higher than adjacent native landscapes. In San Francisco, 
about 16% of the trees are from species native to Cali-
fornia state. Trees with a native origin outside of North 
America are mostly from Australia (29.3% of the species) 
[42]. 

2.3. Remotely Sensed Data 

We used the standard airborne LiDAR data over San 
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Francisco, California, USA, recorded in June 2010. The 
data was in LASer (LAS) format which is a file format 
specification for the interchange of 3D point data (x, y, z 
triplet per point) approved by American Society for 
Photogrammetry and Remote Sensing (ASPRS) [9]. In 
addition to airborne LiDAR data, we also used radiomet-
rically-corrected, geo-referenced, orthorectified 16-bit 
standard level 2 (LV2A) WV-2 multi-sequence datasets, 
including single band PAN and 8-band MSI images at 46 
cm and 185 cm ground sample distance, which were re-
sampled to 50 cm and 200 cm, respectively. The data 
was provided with tiles of 8-band MSI and single-band 
PAN images, which were spatially mosaicked to generate 
a single continuous image for each region. Level 2A of 
image preprocessing was done by the DigitalGlobe. This 
preprocessing entails standard ortho-correction using 
base elevation from a relative coarse resolution DEM, 
nearest neighbour (NN) resampling method using stan-
dard kernel filters and standard radiometric correction 
procedure. The images which were acquired in nearly 
cloud-free bright illumination on 9th October 2011 over 
San Francisco covered a number of buildings, vegetation 
structures, forest structures, skyscrapers, industrial struc-
tures, residential houses, highways, community parks, 
and private housing (Figure 3). The images were geo-
metrically corrected and georegistered to World Geodetic 
System (WGS) 1984 datum and the Universal Transverse 
Mercator (UTM) zone 10N projection. The calibration 
metadata was used to convert the raw digital numbers to 
radiance. This information is adequate to assess the po-
tential of airborne LiDAR data for extraction of tree fea-
tures. 

2.4. Reference Data for Accuracy Assessment 

The remote sensing (RS) data cannot be used efficiently 
without ground truth, especially for urban studies. The 
successful interpretation of RS data requires supplemen-
tary field work to understand the small-scale variations 
that are common in urban land cover. PAN-sharpened 
WV-2 (0.5 m) supplemented by publicly available GIS 
maps and historical Google Earth images were used for 
accuracy analysis. The ground truth datasets used to sup- 
port tree feature mapping include survey data (http:// 
www.sftrees.com/), San Francisco's comprehensive ur-
ban forest report (available on http://www.nrs.fs.fed.us 
/pubs/rb/rb_nrs008.pdf), urban forest maps (available on 
http://urbanforestmap.org/map/), publically available city 
maps, and historical Google Earth images and maps 
(Figure 4). 

3. Methodology 

3.1. Worldview-2 Processing  

Preprocessing of the WorldView-2 imagery comprises of  

 

Figure 3. WorldView-2 PAN-sharpened image (50 cm spa- 
tial resolution) showing the spatial extent of study area. 
 
four separate steps: 1) data preparation, 2) data fusion, 3) 
co-registration of WV-2 Pan-sharpened images to the 
LiDAR data, and 4) shadow compensation using LiDAR 
based DSM. 

3.1.1. Data Preparation 
1) Dark pixel subtraction: First, a dark pixel subtrac-

tion was performed to reduce the path radiance from each 
band. The dark object is the minimum digital number 
(DN) value for more than 1000 pixels over the whole 
image [43]. The dark objects need to be carefully chosen 
from the scene; clear water bodies and dark vegetation 
under shadows are traditionally selected as dark objects 
[44,45]. Clear water bodies were used as dark objects in 
our analysis following the literature [46]. The DN values 
for DOS per band for the WV-2 image are: [11,29,33,36, 
39,47,51,81]. 
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Figure 4. Multitemporal Google Earth images used in present study as a supplementary source for accuracy assessment. 
 

2) Data calibration: Calibration of image spectrometer 
data necessitates radiometric corrections, which require a 
function to convert the DN into the at-sensor radiance 
[47]. The at-sensor radiance was calibrated to minimize 
atmospheric effects. The calibration method was adapted 
from literature [48]. The calibration procedure was car-
ried out in two steps: 1) conversion of the raw DN values 
to at-sensor spectral radiance factors and 2) conversion 
from spectral radiance to Top-of-Atmosphere (TOA) re- 
flectance. 

3.1.2. Data Fusion 
In order to provide a detail spatial context to the study, 
fusion of MS image and PAN image was necessary 
[49-52]. In the present study, the PAN and MSI were 
captured at the same time and with the same sensor. 
Hence, PAN-sharpening was carried out without further 
registration [53,54]. In order to create an image at 0.50 m 
resolution [55-57], the multiband image was PAN- 
sharpened from a resolution of 2.00 m to 0.50 m by using 
Hyperspherical Color Sharpening (HCS) fusion method 
which has been specifically developed for the WV-2 data 
[58]. Since the HCS resolution merge algorithm requires 
smoothing filters, we used three filters 3 × 3, 5 × 5, and 7 
× 7 to yield three PAN-sharpened images. The image 
with the least spatial artifacts was selected by visual in-
terpretation. Finally, the HCS-sharpened image with the 
dimension 5 × 5 convolution filter was selected for fur-
ther analysis. 

3.1.3. Co-Registration 
The first and possibly most important precursor step of 
the tree feature extraction process is the precise co-reg- 

istration between all datasets. In fact, neglecting geo- 
registration can lead to false accuracy analysis. The opti- 
cal WV-2 data and the LiDAR intensity image were co- 
registered. Co-registration was performed in two steps: 1) 
geometric correction without ground control points 
(GCPs) and 2) ortho-rectification using ground control 
points. The main challenge was to match the resolution 
of LiDAR intensity image with the resolution of PAN- 
sharpened WV-2 image. At first, the WV-2 rational poly- 
nomial coefficients model (RPC) was executed in ER- 
DAS Leica Photogrammetry Suite (LPS) using supple- 
mentary (.RPB) file. In the second stage, orthorectifica- 
tion was carried out using ERDAS LPS by incorporating 
well-distributed GCPs. The obtained root mean square 
error (RMSE) for the WV-2 was estimated to be 0.25 m 
using more than 10 well-distributed GCPs. 

3.1.4. Shadow Compensation Using LiDAR Based  
DSM 

For hilly environments with high geographic relief, local 
topography may cause cast shadows due to the blocking 
of direct solar radiation. The optical RS images of these 
landscapes display reduced values of reflectance for 
shadowed areas compared to non-shadowed areas with 
similar surface cover characteristics. Since PAN-sharp- 
ened WV-2 image was used for accuracy analysis and 
visual interpretation, pre-masking of shadowed tree fea- 
tures was necessary. We used the most straightforward 
method for compensating shadows from imagery by us- 
ing the digital surface model (DSM) based shadow de- 
tection and pre-extraction compensation, following Rau 
et al. [59] in urban areas, and Giles [60] in mountainous 
areas. We used the LiDAR-based DSM of San Francisco 
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for shadow compensation. The cast shadow from WV-2 
image was computed from aforementioned DSM and the 
sun elevation information at the time of WV-2 image 
acquisition. The DSM-based shaded relief map and 
shadow map (Figure 5) were prepared in order to iden- 
tify the shadow pixels formed by the topography and low 
sun angle. It is noted that the region affected by cast 
shadow was masked for the tree extraction accuracy 
analysis process. These shadowed trees were manually 
checked after non-shadowed (open) tree extraction accu- 
racy analysis by visual interpretation using supplemen- 
tary field datasets coupled with multi-temporal satellite 
images. 

3.2. LiDAR Data Processing 

A step by step workflow used in this research is shown in 
Figure 6. LiDAR-based individual tree feature extraction 
consists of five main tasks: 1) bare earth digital elevation 
/terrain (DEM/DTM), DSM, and intensity image genera- 
tion, 2) building footprint extraction, 3) individual trees/ 
vegetation/forest extraction using CHM, 4) tree filtering, 
and 5) accuracy assessment of tree feature extraction. 
Many different software packages are available to re-
sample LiDAR point clouds into 2-D grids and advanced 
processing. We utilized Overwatch system’s LIDAR 
Analyst for ArcGIS, LAStools© software, and QCoherent 
software LP360 for ArcGIS. Methodology consists of 
five steps: 

3.2.1. Extraction of Bare Earth Digital  
Elevation/Terrain (DEM/DTM) and Digital  
Surface Model (DSM) 

Conversion of point clouds to uniform raster surfaces or 
2D-grids by resampling methods is the first essential step 
in many LiDAR based applications. Many surface inter-
polation methods are available in literature for effective 
rasterization [61]. The choice of cell size affects the 
quality of 2D-raster models or surfaces generated. We 
selected a grid size of 50 cm to match the 50 cm resolu-
tion of PAN-sharpened WV-2 image and based on aver-
age tree diameters interpreted using WV-image. A bare 
earth DEM/DTM, a DSM and an intensity image were 
derived from the raw airborne LiDAR data. The DEM/ 
DTM was generated by triangulating elevation values 
only from the bare-earth LiDAR points, while the DSM 
was generated by triangulating elevation only from the 
first-return LiDAR points (Figure 7). The intensity im-
age was generated by triangulating intensity from the 
first-return LiDAR points. Surfacing was used to inter-
polate the ground points and generate the DEM [62]. In 
this study, the ground points were collected and interpo-
lated using an adaptive triangulated irregular network 
(TIN) model. We employed TIN interpolation method 
over IDW and spline, because the LiDAR point cloud 

data was very dense and spline and IDW method failed 
to give desired results. TIN approach also considers the 
density variation between data points. As the study area 
is urban, this method provided good results when com-
pared to other methods like Kriging which is useful in 
the areas consisting of diverse features which exhibit 
high degree of spatial auto-correlation. Bare earth DTM/ 
DEM extraction is followed by editing or cleaning of that 
bare earth layer. In most of the cases, bare earth DEM 
does not represent true ground elevation. Hence, the 
model was cleaned/ edited to get the most accurate DEM/ 
DTM possible. After DTM editing, we normalized the 
LiDAR point cloud data based on DTM in order to re-
duce the effect of undulating terrain. The normalization 
step is very significant since the tree filtering algorithm 
needs to define a reference height for further processing. 
We normalized the vegetation point cloud values by sub-
tracting the ground points (DEM) from the LiDAR point 
cloud [41]. A normalized digital surface model (nDSM) 
or CHM is calculated from the LiDAR data by subtract-
ing the DEM from the DSM. The CHM or the normal-
ized DSM represents the absolute height of all above-
ground urban features relative to the ground. After nor-
malization, the elevation value of a point indicates the 
height from the ground to the point. The above-ground 
points were used for tree feature and building footprint 
extraction. 

3.2.2. Building Footprint Extraction 
The second step of the workflow is to identify building 
measurements from non-building (mainly vegetation) 
data to aid tree feature extraction. Building footprint ex- 
traction consists of extracting the footprints of buildings 
in 3D shapefile format along with the attribute table 
showing the information about each building polygon. 
This task also consists of editing building footprint layer 
so as to separate the merged buildings. We employed 
LiDAR analyst 4.2 for ArcGIS workflow for buiding 
extraction. The parameters used for building extraction 
are listed in Table 1-3. The final output map of building 
feature extraction is shown in Figure 8. 

3.2.3. Individual Trees/Vegetation/Forest Extraction 
We used the CHM based method for individual tree fea-
ture extraction. The individual tree extraction based on 
this method produces 3D shapefile for extracted tree fea-
tures. It is generally assumed that the LiDAR points 
other than the terrain are tree features in the urban areas. 
The calculation of individual tree height is difficult be-
cause it is indistinct where the laser pulse hits and re-
flects from the tree. A local maximum filtering with 
variable search window approach was used to detect tree 
features. In individual tree extraction, first and last return 
point clouds  were used along with the bare earth and 
building footprint models discussed above. While  
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Figure 5. DSM-based shaded relief map and shadow map for the study area. 
 

 

Figure 6. LiDAR point cloud data processing workflow adapted in the present study. 
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Figure 7. LiDAR based bare earth DEM and DSM for the study area. 
 

Table 1. Criteria used for bare earth, buildings and trees extraction. 

Sr. No. Criteria Steps 

1 Bare Earth extraction method Rasters louds  or Point C

2 Pre-processing A s 

Remove buildings ea less than 

3  

Minimum  trees 

1  

Minim dings 

Variable  search 

Pr e 

M

uto-detect no-data region

3 Return filter All returns 

4 with ar 30 m2 

5 Remove buildings with area more than 5000 m2

6 Remove buildings with height less than 2.2˚ 

7 Minimum slope for building roofs 15˚ 

8 Maximum slope for building roofs 40˚ 

9 Texture variance for trees 80% 

10  difference between returns for 0 

11 Smoothing tolerance m

12 um height for tall buil 15 m 

13 Minimum area for tall buildings 200 m2 

14 Tree extraction method  window

15 edominant tree/forest typ Mixed 

16 Minimum tree height 3 m 

17 Maximum tree height 40 m 

18 inimum size of the forest 600 m2 

 
Table 2. Criteria for point cloud classification. 

Sr. No. Criteria Steps 

1 Ground height threshold 0.3 m 

2 Mini ngs) 

Minimum egetation 

M  

mum height (Building setti 1.5 m 

3 Search Radius 2 m 

4 height for Low v 0.5 m 

5 inimum height for medium Vegetation 1 m 

6 Minimum height for high vegetation 2 m 
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Table 3. S classification statistics fo t statistics for LAS points which w lassified as a  LA r building and tree class (heigh ere c
given feature class are recorded in the “Included” field, and statistics in the “Excluded” field were gathered from points that 
should have been classified as the given feature class but were weeded out due to the user-defined classification settings). 

Building Features Tree Features 
Parameter 

Include cluded Included xcluded d Ex E

Min. Height 1.50 0.50 1.00 0.50 

Max. Height 4

Stan ht 

1 3  7  1  

06.54 1.50 34.19 1.00 

Mean Height 13.00 0.92 5.92 0.72 

dard Dev. Heig 18.39 0.29 6.31 0.14 

Point Count 3999456 31429 315433 718478

 

 

Figure 8. LiDAR-based building and tree features. 
 
xtracting the trees, the minimum tree height was set to a mum height, etc. (Table 3). The segmented point clouds 

ering 
Since the data includes many elevated objects such as 

idges, the classification or filtering 

e
value = 0.5 m, that corresponds with the size of vegeta-
tion we desire to be called a tree. The resulting shapefile 
of tree feature extraction consists of point features show-
ing individual trees. While extracting forests, maximum 
distance between the trees and minimum size of group of 
the trees/ minimum size of a forest were specified by trial 
and error method to achieve desired results. After tree 
feature extraction, LiDAR point cloud classification was 
performed so as to classify different points according to 
their elevation values and defined criteria. The accuracy 
of the classification highly depends on the user defined 
criteria (Table 1 and 2). Texture variance for trees and 
minimum difference between returns for trees are the 
crucial parameters which affect the extraction accuracy. 
The classified LiDAR output contained three categories: 
bare earth, buildings and vegetation. The text file of out-
put gives information about the total points included or 
excluded in a particular class, maximum height, mini-

and the tree locations are then used as input for tree fil-
tering routine. 

3.2.4. Tree Filt

buildings, trees and br
is needed in various LiDAR applications. The classifica-
tion of point cloud data is called the filtering process of 
LiDAR data. In this study, a tree filtering algorithm aims 
at separating dominant trees and above-ground objects 
such as buildings, bridges and undergrowth vegetation. 
This algorithm requires three input parameters: 1) maxi-
mum growing distance for tree crown, 2) maximum 
growing distance for tree trunk, and 3) average tree trunk 
diameter. We used the histogram-based tree filtering al-
gorithm practiced by Rahman et al. [35]. The final output 
map of tree feature extraction is shown in Figure 8 and 
3-D rendering is shown in Figure 9. 
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Figure 9. 3D rendering of extracted tree and building fea- 
tures over the study area extraction results. 

In accuracy assessment, we visually interpreted the Li-
3.2.5. Accuracy Assessment 

DAR-classified trees on WorldView-2 image. The 8- 
band WorldView-2 image was georeferenced, orthorecti- 
fied and PAN-sharpened using HCS method (Figure 10). 
WV-2 PAN-sharpened image (0.5 m) was used such that 
the tree features can be easily recognized. The PAN- 
sharpened image (0.5 m) was visualized in ArcGIS 10 at 
several scales for the better visualization of tree features 
using various band combinations: 7-4-2; 8-7-2; 6-3-2; 
5-3-2 and 7-3-2. Finally, 1:500 scale and 5-3-2 band 
combination was selected for visualization of the tree 
features. Based on publically available map datasets and 
Google images of the study area and visual analysis of 
the satellite data, the WV-2 HCS-sharpened image was 
manually evaluated using ArcGIS 10 to visualize against 
LiDAR based extracted tree features. All the tree features 
extracted by processing LiDAR data were evaluated us-
ing WW-2 PAN-sharpened image to interpret individual 
trees for statistical accuracy assessment.  

4. Results 

 focused on CHM-based trOur research
traction using

ee feature ex- 
 high-resolution airborne LiDAR data and 

w

 CHM method using LiDAR 
po

pography-based 
sh

 cloud into ground and non-ground is 
step for DEM/DTM generation from 

 

its accuracy assessment using high-resolution WV-2 
image data. In tree feature extraction methodology, the 
scene dependent criteria were used. Texture variance for 
tree features and minimum difference between returns for 
trees were the crucial parameters in building and trees 
feature extraction. The results depicted on Table 3 show 
that all the LiDAR points exihibit point cloud classi- 
fication and hence, the criteria used for tree and building 
feature extraction were appropriate. A 3D representation 
of the extracted tree features is depicted in Figure 11. 

A 8-band WV-2 image was used for visual inter- 
pretation of LiDAR-classified tree features. The image 

as PAN-sharpened and georeferenced which helped in 
proper visualization of LiDAR tree points. In addition, 
orthorectification of WV-2 images enhanced the overall 
accuracy of the analysis. 

The results depicted on Table 4 show that 15,143 tree 
features were extracted by

int cloud data. All the tree features extracted using 
LiDAR data were cross-verified using multitemporal 
high resolution image, which indicates that the 14,841 
tree features were correctely interepreted out of 15,143 
tree features. The overall accuracy of LiDAR based tree 
feature extraction was found to be 98% against the high 
resolution satellite image as a reference. 

A DSM-based shadow mask was used for reducing the 
potential source of error attributable to to

adow in high resolution image. A total of 1011 tree 
features under shadow were cross-verified using multi- 
temporal image data. It is evident that the LiDAR-based 
extraction caused over-estimation of 302 tree features, 
which can be atttributed to two methodological and expe- 
rimental inadequacies: 1) the present research was ca- 
rried out using scene dependent criteria which should be 
optimized with trial-and-error method, and 2) the error 
might be propogated during the LiDAR filtering or 
classification process. For optimal tree feature extraction, 
we propose the rigorous optimization of criteria and sy- 
nergetic usage of high resolution data for tree feature ex- 
traction in future studies. 

5. Discussion 

Separation of point
the most critical 
point cloud data. Filtering and interpolation algorithms 
play a major role in this task. As point cloud is able to 
penetrate the forested areas, it has an advantage over 
photogrammetry of a highly accurate DTM extraction in 
forested areas [10]. Numerous methods have been de-
veloped for point cloud processing so far, but some more       
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Figure 10. LiDAR-based classification and tree feature extraction accuracy assessment. 
 

 

Figure 11. 3D representation of extracted tree features over the study area. 
 

Value 

Table 4. Statistics for LiDAR based tree feature extraction. 

Attribute 

Total tree features extracte R by using CHM method d from LiDA 15143 

To a 

Total n e data 

tal tree features visually interpreted using multitemporal image dat 14841 

on-shadowed tree features visually interpreted using multitemporal imag 13830 

Total shadowed tree features visually interpreted using multitemporal image data 1011 

Total overestimated tree features 

Overall accuracy for tree feature extraction 

302 

98% 
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work has to be done to get much bette

ty datasets make it easy to f
r results. High den- 

si ilter ground from non- 
ground points, but for low density datasets, choice of 
filtering algorithm is an utmost important step to achieve 
the highest possible accuracy. Due to significant increase 
in the volume in case of highly dense point cloud data, 
data storage, processing and manipulation become im- 
portant issues to be taken care of [63]. We note that the 
use of a PAN-sharpened image as reference data for the 
accuracy analysis introduces, to some extent, data circu- 
larity. We cross-verified the tree features visually inter- 
preted on PAN-sharpened WV-2 images with multitem- 
poral satellite image data to reduce data circularity and 
bias due to visual interpretation of WV-2 data. Addition- 
ally, we have carried out an extensive accuracy analysis 
of the tree feature extraction using the visual interpreta- 
tion of WV-2 image supported by empirical crossverifi- 
cation of tree points in terms of visual analysis of Google 
Earth images of the study area and employing different 
methods using various sources of ground truth data ac- 
quired through several means from urban areas, which 
are publicly available (GIS-based) as maps and manually 
prepared polygons. We also note that the difference in 
acquisition of WV-2 and LiDAR datasets might have 
affected the analysis, however, this study employs many 
supplementary temporal datasets in the analysis. There- 
fore, we surmise that the potential data circularity exist- 
ing in our accuracy analysis had a relatively insignificant 
effect on the comparative performance of the tree feature 
extraction. 

6. Conclusion  

rborne LiDAR data provid
for tree feature extraction in urban

e image data for supporting tree feature e ion. 
h highlights the usefulness of the c y 

rch team free of cost. 
jan, Director, NCAOR and 

for their encouragement 

No. 1, 2002, pp. 19-23.  
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRS

The high resolution ai
mendous potential 

e tre- 
 

environment and the high resolution WV-2 imagery sup- 
plements the accuracy assessment procedure. The objec- 
tive of this study was to evaluate CHM-based tree-fea- 
ture extracting accuracy by visual interpretation/identi- 
fication on 8-band WorldView-2 image. Our study uses 
the algorithm developed by Overwatch system’s LiDAR 
Analyst for ArcGIS for LiDAR feature extraction and 
classification with scene dependent criteria. The 8-band 
WorldView-2 image gives better recognition and extrac-
tion of various land-cover features and due to the inclu-
sion of new bands in that image, the vegetation analysis 
becomes more effective. This study leads to the follow-
ing conclusions: 1) Texture variance for trees and mini-
mum difference between returns for trees turned out to be 
the two most important factors in discriminating the tree 
and building features in the LiDAR data; 2) Preprocess-
ing of the WV-2 image improved the visualization of 
vegetation features; 3) LiDAR data were found to be 
capable of extracting shadow-covered tree features; 4) 
LiDAR point cloud data can be used in conjunction with 

used methodology for the LiDAR data processing and 
the effectiveness of 8-band WorldView-2 remotely sen- 
sed imagery for accuracy assessment of LiDAR-based 
tree-feature extraction capability. 
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