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This paper develops a collaborative business model for imperfect process with setup cost and lead time 
reductions. We propose a simple solution procedure to derive the optimal order quantity, lead time, deli-
very frequency and setup cost. Shortage during the lead time is assumed to be partially backordered. Nu-
merical examples are carried out to show how the proposed model can result in a substantial cost savings 
over the traditional model. 
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Introduction 
Strategic business alliance is a formalized type of collabora-

tive relationship between a vendor and a buyer in a supply 
chain. It involves commitment to long-term cooperation, shared 
benefits, joint problem solving and information sharing. This 
close partnership will ultimately improve product quality and 
reduce inventory cost and lead time of the supply chain. 

(Goyal, 1976) was one of the first authors to develop an in-
tegrated inventory model for a single supplier-single customer 
problem. The joint vendor-buyer optimization was later rein-
forced by (Banerjee, 1986; Goyal, 1988). (Lu, 1995; Hill 1997) 
presented a cooperative multiple deliveries policy. (Ha & Kim, 
2003) considered a simple JIT single-setup multi-delivery mo- 
del and a single-setup single-delivery (SSSD) model. (Yang & 
Wee, 2000) considered an integration issue in an integrated 
deteriorating model. However, the quality related issues and the 
benefits of the setup cost and lead time reduction were not ad-
dressed in these integrated models. 

Setup cost reduction is one of the important production ac-
tivities in an integrated inventory control. In practice, setup cost 
can be reduced through worker training, procedural changes 
and specialized equipment acquisition. (Porteus, 1986) studied 
the impact of investing in reducing setup cost by considering 
the discounted model. (Affisco, Paknejad, & Nasri, 1988, 2002) 
addressed the joint optimization cost of the vendor and the 
buyer. They showed that by investing in setup cost reduction of 
the vendor, a significant saving in joint total cost can be 
achieved. (Nasri, Paknejad, & Affisco, 1991) extended Baner-
jee’s model to investigate the impact of investing in setup cost 
and ordering cost reductions simultaneously. Their results indi-
cated that both the vendor and the buyer can realize significant 
savings. 

Lead time reduction is another important production activity 
in an integrated inventory control. Lead time consists of order 
preparation, order transmittal, order processing and assembly, 
additional stock acquisition time and delivery time (Ballou, 
2004). In most cases, lead time can be shortened with an added 
crashing cost. Recently, (Ouyang, Yeh, & Wu, 1996) extended 
the (Q, r) model by (Ben-Daya & Raouf, 1994) to consider the  

lead time effect and incorporate the partial backordering into 
the inventory model. (Hariga, 1999) studied the relationship 
between lot size and lead time in the process time aspect. (Pan 
& Yang, 2002) presented an integrated supplier-purchaser model 
with controllable lead time. The model has a substantial cost 
saving when lead time is controllable. (Chen, Chang, & Ouyang, 
2001) presented a continuous review inventory model when 
ordering cost is dependent on lead time. (Ben-Daya & Hariga, 
2003) developed a continuous review inventory model where 
lead time is considered as a controllable variable. Lead time is 
decomposed into all its components: set-uptime, processing 
time and non-productive time. Later, (Ouyang, Wu, & Ho, 2004) 
extended Pan and Yang’s model by allowing shortages. 

In a real system, due to the imperfect production process of 
the vendor and the damages during the transportation process 
from the vendor to the buyer, goods received by the buyer may 
contain some percentage of defectives. Recently, (Salameh & 
Jaber, 2000) examined a joint EOQ lot sizing and inspection 
policy with imperfect quality. They assumed 100% screening 
and all poor-quality items were sold at the end of the screening 
process. (Goyal, Huang, & Chen, 2003; Huang, 2004) extended 
Salameh and Jaber’s model and proposed an integrated ven-
dor-buyer cooperative inventory model for items with imperfect 
quality. (Parachristos & Konstantaras, 2006) pointed out some 
drawback in Salameh and Jaber’s model regarding ensuring no 
shortage occurrence. They extended the model by Salameh and 
Jaber to consider withdraw at the end of the planning horizon, 
and consider different inspection process with Bernoulli ran-
dom variable and sufficient condition to prevent shortage. (Chung 
& Huang 2006) modified two assumptions of the classical EOQ 
model to reflect the real-life situations. Their study incorpo-
rated the model by (Salameh & Jaber, 2000) to consider a re-
tailer’s production/inventory model with imperfect quality and 
permissible delay in payments. 

In our integrated business model, lead time demand is consi-
dered to be normally distributed. We derive the joint total ex-
pected cost function for the partners and propose a simple algo-
rithm procedure to derive the optimal integrated business model 
policy. Finally, numerical examples are carried out to show 
how the proposed model can result in a substantial cost savings 
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over the traditional model. 

Notation and Assumptions 
The notation used in our model is shown as follows: 
D: average demand per year for the buyer 
P: production rate of the vendor 
A: per ordering cost for the buyer 
A0: original ordering cost 
S: per setup cost for the vendor (decision variable) 
S0: original setup cost 
I(S): capital investment in reducing the vendor’s setup cost; 

( )0 0( ) ln / , for 0  SI S C S S S S= < ≤ , 

where the parameter CS = 1/θ and θ denotes the percentage 
decrease in S per dollar increase in I(S) 
αS: the fractional cost of the vendor’s capital investment 
Cb: unit purchase cost paid by the buyer 
Cv: unit production cost paid by the vendor 
rb: inventory carrying cost percentage per year per dollar for 

the buyer 
rv: inventory carrying cost percentage per year per dollar for 

the vendor 
π: stock-out cost per unit short for the buyer 
π0: marginal profit per unit for the buyer 
β: fraction of the shortage that will be backordered, [ ]0,1β ∈  
γ: screening rate for the buyer 
t: screening period for each arrival lot 
u: screening cost per unit for the buyer 
v: warranty cost of defective items per unit for the vendor 
R: reorder point of the buyer (decision variable) 
Q: order quantity of the buyer (decision variable) 
L: length of lead time for the buyer (decision variable) 
L0: original length of lead time 
m: number of lots in which the items are delivered from the 

vendor to the buyer in one production cycle (decision variable) 
X: lead time demand which has a cumulative distribution 

function (c.d.f.) F with finite mean DL and standard deviation 
Lσ , where σ  denotes the standard deviation of demand 

per unit time. 
Y: percentage of defective items in Q 
f(y): probability density function of Y 

( )φ ⋅ : standard normal probability density function 
( )Φ ⋅ : standard normal cumulative distribution function 
( )E ⋅ : expected value 

TCb: total expected annual cost for the buyer 
TCv: total expected annual cost for the vendor 
JTC: joint total expected cost including TCb and TCv 
It is assumed that the buyer adopts a continuous review in-

ventory policy where lead time can be reduced by a crashing 
cost. The vendor may also invest in setup cost reduction. The 
imperfect production process of the vendor results in random 
defective items. As a result, an order received by the buyer has 
a certain percentage of defective items. Since 100% screening 
process is used, all the defective items are screened out and 
discarded. Other assumptions for our model are: 
• R = DL + k Lσ , where SS = k Lσ  and k is the safety 

factor. 
• Shortages are partially backordered. 
• The lead time L has n mutually independent components. 

The ith component has a minimum duration ai and normal dura-
tion bi, and a crashing cost ci per unit time. The components can 

be rearranged such that 1 2 nc c c≤ ≤ ≤ . The components are 
crashed from the least crashing cost per unit time. 
• The lead time and ordering cost reductions have the fol-

lowing relationship: 

( ) ( )0 0 0/ ln /A A A L Lτ− =  

where τ (<0) is constant scaling parameter for the logarithmic 
relationship between percentages in lead time reductions and 
ordering cost. 
• Y and the buyer’s demand are independent random vari- 

ables. 
• The extra costs incurred by the vendor will be fully trans-

ferred to the buyer if shortened lead time is requested. 
• The number of good units is equal or greater than the de-

mand during the screening period. 

Model Formulation 
The shortage quantity at the end of the buyer’s replenishment 

cycle is (X − R)+ and the order cycle length of the buyer is (1 − 
Y)Q/D, where X and Y are assumed to be independent random 
variables. Hence, the expected annual stock-out cost for the 
buyer is. 

( ) ( )
( )

( ) ( )

0

0

1
1

1 1
1

D X R
E

Y Q
DE E X R

Y Q

π π β

π π β

+

+

 −
 + −     −  
 =  + −  −   − 

     (1) 

The net inventory level of the good items at the epoch before 
and after receipt of an order is R − DL + (1 − β)E(X − R)+ and 
[1 − E(Y)]Q + R − DL + (1 − β)E(X − R)+ respectively. The 
average inventory of good items is [1 − E(Y)]Q/2 + R − DL + (1 
− β)E(X − R)+. Since the defective items are discarded after the 
screening process, the buyer’s expected defective item inven-
tory is E{tQY/[(1 − Y)Q/D]} = E[Y/(1 −Y)]QD/γ. The total ex-
pected inventory carrying cost per year for the buyer is 

( )

( ) ( )

1
1 2

(1 )
b b
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  −    +  −  
 + − + − − 

         (2) 

Let Li be the length of lead time with components 1, 2, ..., i  
crashed to their minimum duration, then Li can be expressed as 

( )

( )
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i
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      (3) 

The lead time crashing cost C(L) per cycle for a given L∈  
[Li, L i−1] is 

( ) ( ) ( )
1

1
1

i

i i j j j
j

C L c L L c b a
−

−
=

= − + −∑        (4) 

Therefore, the expected lead time crashing cost per year for 
the buyer is E{C(L)/[(1 − Y)Q/D]} = E[1/(1 − Y)]DC(L)/Q. 
From assumption (4), the lead time L and ordering cost A have 
a relationship: 

( ) ( )0 0 0/ ln /A A A L Lτ− =            (5) 

Equation (5) can be rewritten as 
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A(L) = d + eln(L)                 (6) 
where d = A0 + τ A0 ln(L0) and e = −τA0 > 0. 

Summarizing the ordering cost, the screening cost, the in-
ventory carrying cost, the stockout cost and the lead time cra- 
shing cost, the total expected annual cost of the buyer is 

( ) ( )

( ) ( ) ( )

( ) ( )

( )
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1
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  (7) 

The total expected annual cost of the vendor includes the se-
tup cost, the warranty cost, the inventory carrying cost and the 
investment in setup cost reduction. One has 

( )

0
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1, ,
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1 1 21 1
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  (8) 

The joint total expected annual cost JTC for the vendor and 
the buyer is the sum of TCp and TCb. One has 

( ) ( ) ( ), , , , , , + , ,b vTC Q L R m S TC Q L R TC Q m S=    (9) 

After some algebra manipulations on (9) and using M instead 
of E[1/(1 − Y)], the problem is formulated as 

( )Minimize , , , ,JTC Q L R m S  
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(10) 

0Subject to 0 S S< ≤  

The Optimal Solution 
When the lead time demand X is assumed to follow a normal 

distribution, the expected shortage quantity E(X − R)+ can be 
expressed as 

( ) ( ) ( )
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where ( ) ( ) ( )1k k k kφ ϕ= −  −Φ    
Substituting (11) and R − DL = k Lσ  into (10) and using 

the safety factor k as a decision variable instead of R, (10) is 

transformed to 
( )Minimize , , , ,JTC Q L R m S  

( )( ) ( ) ( ) ( )
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(12) 

0Subject to 0 S S< ≤  
To solve the non-linear integer programming problem in (12), 

we temporarily ignore the constraint 00  S S< ≤ . Taking the 
partial derivatives of JTC(Q, L, k, m, S) with respect to L∈  
[Li, Li−1], one has 

( )
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and 
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Therefore, JTC(Q, L, k, m, S) is concave in L∈ [Li, Li−1] and 
the minimum expected joint total cost will occur at the end 
points of the interval [Li, Li−1]. 

On the other hand, for fixed L∈ [Li, Li−1] and integer m, the 
following results of Q, k, and S can be derived as: 

( )( ) ( ) ( ) ( )
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( ) ( ) ( ) 0

1
1 1

b b

b b

r C Qk
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   (16) 

and 

S SC mQS
DM

α
=                  (17) 

It can be shown that for fixed m and L∈ [Li, Li−1], the Hes-
sian matrix of JTC(Q, L, k, m, S) is positive-definite at point 
(Q*, k*, S*) and hence, JTC(Q, L, k, m, S) is convex for the op-
timal value (Q*, k*, S*). 

Substituting (15) into (12), JTC(Q, L, k, m, S) can be reduced 
to 

( ) ( )( ) ( ) ( ) ( )
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The optimal value of m (denoted by m*) can be obtained 
when 

( ) ( ) ( )* * *1 1JTC m JTC m JTC m− ≥ ≤ +       (19) 

We then develop the following algorithm to find the optimal 
value of m, Q, k, L and S. 

Algorithm 1 
Step 1. Set m = 1. 
Step 2. For each , 0,1, ...,iL i n=  performs i) to vii). 
i) Start with Si = S0 and ki = 0. 
ii) Check the standard normal table to determine ( )ikφ  and 
( )ikΦ . 
iii) Use ki, ( )ikφ  and ( )ikΦ  to compute  
( ) ( ) ( )1k k k kϕ φ= −  −Φ   . 
iv) Substitute S = Si, m and ( )kϕ  = ( )ikϕ  into (15) to 

compute Qi. 
v) Substitute Q = Qi into (16) to determine ( )ikΦ . Then 

check the standard normal table to determine ki and ( )ikφ . 
vi) Substitute Q = Qi and m into (17) to determine Si. 
vii) Repeat iii) to vi) until no change occurs in the values of Si, 

ki and Qi. Denote the solution by .and, iii Q̂k̂Ŝ  
Step 3. Compare ˆ

iS  and S0. 
i) If ˆ

iS  < S0, then the solution found in Step 2 is optimal for 
a given Li and m. Denote the optimal solution by *

iS , *
ik  and 

*
iQ . 

ii) If 0
ˆ

iS S≥ , set *
iS  = S0. The optimal value of iQ  and 

ik  can be determined by using proce-dure i) to vii) in Step 2 (It 
is noted that S = S0 is fixed during this solution process). 

Step 4. Compute JTC( *
iQ , Li, *

ik , m, *
iS ) for 0,1, ...,i n= . 

Step 5. Set JTC( *
mQ , *

mL , *
mk , m, *

mS ) = mini=1,2,…,n 
JTC( *

iQ , Li, *
ik  m, *

iS ). Then ( *
mQ , *

mL , *
mk , *

mS ) is the 
optimal solution for fixed m. 

Step 6. Set m = m + 1 and repeat Step 2 to Step 5 to derive 
JTC( *

mQ , *
mL , *

mk , m, *
mS ). 

Step 7. If JTC( *
mQ , *

mL , *
mk , m, *

mS ) ≤  JTC(Qm−1
*, Lm−1

*, 
km−1

*, m − 1, Sm−1
*), then go to Step 6, otherwise go to Step 8. 

Step 8. Set JTC(Q*, L*, k*, m*, S*) = JTC(Qm−1
*, Lm−1

*, km−1
*, 

m − 1, Sm−1
*), then (Q*, L*, k*, m*, S*) is the optimal solution. 

Numerical Example 
We consider an inventory system with the following data: D 

= 600 units/year, P = 2000 units/year, γ = 3000 units/year, A0 = 
$200/order, S0 = $1500/setup, Cb = $100/unit, Cv = $70/unit, π  

= $50/unit, π0 = $150/unit, β = 1.0, u = $1/unit, v = $100/unit, rb 
= rv = .2, σ = 7 unit/week, αS = .1, I(S) = 10,000 ln(S0/S) and the 
three components of the lead time are shown in Table 1. 

The percentage defectives Y of an order follow a uniform dis-
tribution with the following probability density function: 

( )


 ≤≤

=
otherwise,0

0400,25 .y
yf  

Therefore, one has 

( ) 02025040
0 .ydyYE . =∫=  

and 

0.04

0

1 125 1.02055
1 1

M E dy
Y y

 = = = − −  ∫  

The constant scaling parameter τ of the logarithmic relation-
ship between lead time and ordering cost reductions has five 
different values. There are 0, −.2, −.5, −.8 and −1 respectively. 

When the lead time demand follows a normal distribution, 
Algorithm 1 procedure is applied to yield the results for various 
τ as shown in Table 2. 

From this table, the optimal integrated policy for τ value can 
be found by comparing JTC( *

mQ , *
mL , *

mk , m, *
mS ), i = 0, 1, 2, 

3, and the results are summarized in Table 3. To illustrate the 
performance of our model, the result of the traditional model 
without setup cost, lead time and ordering cost reductions is 
listed in Table 3. From the results of Table 3, it is seen that the 
increasing absolute τ value results in higher frequency of deli-
veries, smaller lot size, shorter lead time, higher service level 
and lower total expected annual cost. From the cost comparison 
between our model and the traditional integrated model involv-
ing lead time reduction, we find that when the absolute τ value 
increases, larger total expected annual cost savings can be ob-
tained. 

(Goyal, 1976) assumed the joint total annual cost is equally 
allocated to the vendor and the buyer. For example, when τ = 
−.5, the allocated buyer’s total annual cost is 7477.2 × 3046.3/ 
(3046.3 + 4443.6) = 3041.1 and the allocated vendor’s total 
annual cost is 7477.2 × [1 − 3046.3/(3046.3 + 4443.6)] = 
4436.1. Equal saving allocation may not be the best policy. For 
an effective allocation, the integrated policy must work out the 
saving allocation to benefit both the vendor and the buyer. In 
Table 4, we compare the cost incurred by the players consider- 

 
Table 1. 
Lead time data. 

Lead Time Component Normal Duration bi (days) Minimum Duration ai (days) Unit Crashing Cost ci ($/day) 
1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 

 
Table 2. 
The results for various τ using the solution procedures. 

τ L* m* Q* A(L*) k*(R*) S* SL JTC(Q*, L*, k*, m*, S*) Savings (%)a 
−.2 28 2 124 172.3 1.399(66) 404.4 .919 7728.1 9.58 
−.5 21 2 116 101.9 1.436(52) 377.7 .924 7477.2 12.51 
−.8 21 2 101 43.1 1.504(53) 331.3 .934 7145.4 16.39 

−1.0 21 3 74 3.8 1.661(55) 362.3 .952 6884.4 19.45 
Traditional model 28 3 146 200.0 1.306(64) 1500.0 .904 8546.6 - 

aSavings is based on the traditional model involving lead time reduction only. 
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Table 3. 
Summary of the optimal integrated policy for various τ. 

τ m *
mL  C(Lm

*) A( *
mL ) *

mk ( *
mR ) *

mS  *
mQ  SLa JTC( *

mQ , *
mL , *

mk , m, *
mS ) 

−.2 
1 28 22.4 172.3 1.266(64) 256.8 157 .897 7747.1 
2 28 22.4 172.3 1.399(66) 404.4 124 .919 7728.1 
3 28 22.4 172.3 1.490(67) 510.8 104 .932 7872.9 

−.5 
1 21 57.4 101.9 1.302(50) 241.0 148 .904 7539.2 
2 21 57.4 101.9 1.436(52) 377.7 116 .924 7477.2 
3 21 57.4 101.9 1.527(53) 475.6 97 .937 7584.9 

−.8 
1 21 57.4 43.1 1.367(51) 214.5 131 .914 7281.0 
2 21 57.4 43.1 1.504(53) 331.3 101 .934 7145.4 
3 21 57.4 43.1 1.598(54) 413.0 84 .945 7187.8 

−1.0 

1 21 57.4 3.8 1.423(52) 193.6 119 .923 7088.8 
2 21 57.4 3.8 1.565(54) 294.2 90 .941 6894.7 
3 21 57.4 3.8 1.661(55) 362.3 74 .952 6884.4 
4 21 57.4 3.8 1.734(56) 414.8 64 .959 6928.9 

aSL denotes service level, which is measured by 1 − Pr(X − R). 
 

Table 4. 
Allocation of the total annual cost for each case of τ. 

τ Non-integrated model 
Integrated model 

Buyer Vendor 
JTC 

 TCb TCv JTC TCb Allocated annual cost TCv Allocated annual cost 
−.2 3313.5 4421.0 7734.5 3317.6 3310.8 4410.5 4417.3 7728.1 
−.5 3046.3 4443.6 7489.9 3055.6 3041.1 4421.6 4436.1 7477.2 
−.8 2665.5 4519.8 7185.3 2692.2 2650.7 4453.2 4494.7 7145.4 
−1.0 2347.6 4546.8 6894.4 2353.8 2344.2 4530.6 4540.2 6884.4 

Traditional model 3454.7 5157.3 8612.0 3484.7 3428.5 5061.9 5118.1 8546.6 
 

ing various τ values with the cost of the traditional integrated 
model involving lead time reduction. We find that setup cost, 
lead time and ordering cost reductions simultaneously decrease 
the cost of both the vendor and the buyer. 

Conclusion 
Independent decision made by a buyer or a vendor usually 

does not result in global optimum. For this reason, business 
cooperation among channel members is vital to a supply chain’s 
performance. In this study, we develop an integrated business 
vendor-buyer imperfect inventory model where setup cost and 
lead time reductions are considered in the vendor-buyer part-
nership. Our model assumes complete and partial information 
about lead-time demand distribution. Our results show that 
when lead time and ordering cost reductions are closely corre-
lated, an integrated policy with higher frequency of deliveries, 
smaller lot size and shorter lead time is more desirable. To en-
tice collaboration, the setup cost and lead time reductions must 
result in cost saving for both the vendor and the buyer. 
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