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ABSTRACT 

The features of a cylindrical shear-axial wave scattering by a circular cavity in piezoelectric crystal of 6(4)-class of 
symmetry are discussed. It is shown that the basic integral characteristics of scattering—scattering indicatrix and total 
cross-section scattering have large changes with approach of a linear shear-axial wave source to cavity boundary. The 
small-scale oscillations in spectra of scattering are caused by the interference contribution of waves circulating on a 
boundary as they are capable of effective capture by concave metallized boundary of a cavity. 
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1. Introduction 

The scattering of a plane monochromatic shear wave by 
cylindrical inсlusion in piezoelectric crystal was a subject 
of discussion in works of one of the authors [1-4]. Main 
influence of conductivity and azimuthal drift of charge 
carriers in the semi-conductor cylinder placed in a cavity 
on partial waves of a scattering field and changes of the 
amplitude characteristic of scattering (scattering indica- 
trix) connected with it in a far-wave zone was considered 
in [1,2]. In works [3,4] the attention was paid to changes 
of total cross-section scattering of a plane shear wave by 
a cavity in piezoelectric crystal due to piezoeffect. The 
purpose of our investigation is the subsequent generali-
zation of these results on the case, when the incident 
shear harmonic wave doesn’t have plane, but cylindrical 
front. In other words wave oscillations are propagating 
from a linear source of shear-axial radiation located in 
piezoelectric crystal on restricted distance from a cavity. 

Some academism of statement of the research problem 
is aggravated, certainly, by the circumstance which is 
against works [1-4], where the plane shear wave could be 
considered as idealization of radiation of a shear wave 
source, located on an external surface of a crystal (a si- 
tuation, typical in experimental practice). Here, linear 
source of radiation is located in the volume of a crystal. 
It is known, however, [5] and it is confirmed experimen- 
tally [6] that cylindrical pulses of acoustic radiation arise 

in crystals in the process of dislocation annihilation. In par- 
ticular, at annihilation of pair parallel screw dislocations 
of opposite signs, the pulse of divergent cylindrical shear 
waves is formed [5]. Thus, our investigation of features 
of a cylindrical shear wave scattering by a circular cavity 
in piezoelectric crystal besides general theoretical inter- 
est can be useful to mathematical modeling of the acous- 
tic emission phenomena in crystals with piezoeffect. 

2. Formulation and the Solution of a 
Boundary Problem 

Let us consider the piezoelectric crystal of 6 (4, 6 mm, 4 
mm,  mm) class symmetry with a cavity of circular 
section of radius R, which axis z coincides with the high 
order 6 (4) axis of crystal symmetry. We assume too, that 
cavity is filled with strongly rarefied gas (air); c is the 
permittivity of gas. If the shear waves have axial polari- 
zation of displacement u||z, the crystal, occupying in cy- 
lindrical coordinates (r, , z), area r  R, it is enough to 
characterize by longitudinal e15 and cross e14 coefficients 
of piezoelectricity, module of shear , density  and per- 
mittivity . Then connected electroelastic field in piezo- 
electric crystal may be found in quasi-static approach 
from the decision of the following system of the equa- 
tions [3]. 

2 2 0u k u   , ,      (1) 2 2
15e 0u     

where u is the shear-axial displacement,  
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 1 2
k w    

is the wave number, * 2
15e     is the shear module 

with correction on piezoelectricity,  is Laplacian 
operator in plane x0y,  is the electric potential. 

2

Equations (1) should be considered together with the 
equation 

2
0 0              (2) 

for the potential 0 of electrical field in a cavity. It may 
be noticed, that the second of Equations (1) allows to 
present potential  as  

15e
u


  .               (3) 

Here  is the potential of near-boundary electrical os- 
cillations in piezoelectric crystal, satisfying as 0 to La- 
place equation. Linear harmonic source of a cylindrical 
shear-axial wave of the given amplitude U and frequen- 
cies  we shall arrange (see Figure 1) in parallel axes of 
a cavity on distance d  R from it along a radial direction 
with the azimuth   . Let us designate as  the corner 
between a polar direction O1Ox and direction on obser- 
vation point M from a source and as l the distance from a 
source up to the observation point. 

The field of shear displacement u in the expression (3) 
we shall present as the sum 

I SCu u u  .           (4) 

The members, included in it, are the decisions of the 
Helmholtz Equation (1), representing accordingly the ra- 
diation field uI of a linear harmonic source O1 and the 
field of shear waves uSC, scattering by a cavity (radiated 
by a virtual source O). By a principle of ultimate absorp- 
tion we have in coordinates of each source 

   
   

1
0

1

e

e e

i t
I

i t n in
SC n n

n

u U H kl

u U a i H kr



 










 
.   (5) 

Here t is the time,    1
nH z

0,n
 is the first kind Hankel 

function of integer order 1  [7], an is the 
amplitude factors of partial waves, scattering by a cavity. 

, 2,   

Potentials  and 0, as the decisions of Laplace equa- 
tions, results from scattering of the cylindrical wave (5) 
by a cylindrical cavity and, therefore, it is natural to ex- 
press them in coordinates of a cylindrical cavity by the 
following sums of partial azimuthal harmonics 

| |

| |
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e e

e e

i t n in
n

n

i t n in
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n

b r
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 

 
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 








 






       (6) 

with some coefficients bn and cn, which are found from  
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Figure 1. Geometry of the problem. The concentric dashed 
circles represent fronts of a divergent shear-axial wave, 
emitted by a harmonic source O1. 
 
the boundary conditions. Ones express the absence of 
shear stress Trz and the continuity of potentials and radial 
components of electric induction on the boundary r  R. 

To satisfy with above mention conditions on the boun- 
dary of a cavity, it is necessary also to write a radiation 
field of a linear source uI (5) in coordinates (r, ). With 
this purpose we shall use the addition theorem for cylin- 
drical functions [7]—the method, which is often done at 
the solution of scattering problems with linear sources of 
radiation [8,9]. For represented on a Figure 1 triangle 
O1OM of pair of cylindrical coordinates with the parallel 
axes O1 and O, displaced in polar direction, any point of 
boundary r  R satisfies to the condition r  d. Suitable 
on a reason of convergence of cylindrical functions ex- 
pansion there will be, therefore, the following form of the 
addition theorem: 

       e eimin
n m n m

m

Z kl Z kd J kr 







  .    (7) 

In that formula Zn(x) is any cylindrical function. 
With the account (7), equality  

    exp π 1 exp
m

im im         

and properties of cylindrical functions [7], the field of 
shear displacement u, after simple manipulations simi- 
larly made in [8,9], can to represent in a form 

       
   

1

1

e 1

e

ni t n n
n n

n

in
n n

u U i H kd J kr i

a H kr






 



 

 


   (8) 

Comparing the expression (8) with a field arising at 
the scattering of a plane monochromatic shear wave, 
when the linear source O1 is removed in infinity (d  ) 
[3] 

     1e ei t n in
n n n

n

u U i J kr a H kr 






    ,  (9) 

it is possible to notice, that the difference of amplitude 
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coefficients 

   
       

2

1 12

n eff n
n

n eff n

J n K J
a

H n K H

  

  


 
 


,    (10) 

which were found in work [3], from the amplitude coef-
ficients of a considered boundary problem of a cylindri-
cal wave scattering by a circular cavity in piezoelectric 
crystal, will be shown in (10) extremely by addition of 
factor  

     1 1
nn

nH kd i   

before Bessel function  

   n r R nJ kr J    
and its derivative  nJ  . Thus, we shall receive 

       
       

2
1

1 12

n eff nn
n n

n eff n

J n K J
a H kd i

H n K H

  

  


 
 


.  (11) 

In formula (11) the value 
1

2 2 2 1eff
c c

K K K

 





 
   
 

 



     (12) 

is square of the effective electromechanical coupling coe- 
fficient and the values  

  12 2 *
15K e 


  

and  

  12 2 *
14K e 



   

have sense of squares of the electromechanical coupling 
coefficients of piezoelectric with one only longitudinal or 
cross piezoactivity. 

The procedure of addition before Bessel function and 
its derivative the above mentioned factor for transition 
from a boundary problem of a plane wave scattering to 
scattering of a cylindrical wave is in fact the basic result 
of work [9]. In our case this procedure, certainly, may be 
applied too to amplitude coefficients bn and cn of poten- 
tials of partial electrical oscillations in the expantions (6). 
It is enough to know only coefficients (11) for the analy- 
sis of wave scattering. Therefore we do not write out here 
appropriate expressions for bn and cn, as we do not re- 
search potentials of multipole oscillations (6). 

According to asymptotic form of Hankel function [7] 
the radiation field of a linear source determined by the 
first sum (8), will be expressed in a case  by 
equality 

1kd 

   π 42
e e

π
i kd t n

I n
n

u U i J kr
kd

 in


 



     (13) 

Infinite series in this formula converges to the expo- 

nent exp(ikx), where x  rcos, and it is easy to conclude, 
that radiation field is the plane monochromatic shear 
wave propagating at the polar direction. The considered 
decision of a scattering problem of shear-axial cylindrical 
wave by a circular cavity in piezoelectric crystal, thus, 
turns into the decision of a scattering problem for wave 
with plane front [3]. It is necessary, however to remem- 
ber, that as against [3] the amplitude of incident wave not 
remains constant. More adequately to consider the inci- 
dent wave in asymptotic approximation  toge- 
ther with additional phase multiplier  

1kd 

   exp π 4 2 πi kd kd . 

The given circumstance is necessary to take into ac- 
count at comparison of results of the decisions (8), (9) in 
the area . This difference of asymptotic expres- 
sions of fields explains, in particular, disappearance of a 
shadow zone at scattering of a plane wave as an observa- 
tion point is moving from an obstacle and, opposite, pre- 
servation of shadow zone at scattering cylindrical wave 
at any removals [8]. 

1kd 

3. Integral Characteristics of a Cylindrical 
Wave Scattering 

In order to judge about scattering over all set of partial 
waves use such integral characteristics, as amplitude cha- 
racteristic of scattering S() and total cross-section of 
scattering (). By definition (see, for example, [8]) S 
represents complex amplitude of a scattering field in a far 
wave zone. Given value is interesting by one’s module, 
which characterizes azimuthal redistribution of scattering 
power. As opposite to it, the value  allows consider a 
frequency dependence of the part of radiated by a source, 
of total power that scatters by obstacle. In the certain 
sense S is the efficiency characteristic of scattering esti- 
mated on angular (spatial) spectrum, and  is a spectral 
parameter of similar kind, but only in frequency repre- 
sentation. As dependences S() and () mutually sup- 
plements each other they must be analyzed together to 
give more complete picture of scattering. 

For determination S() may be used an asymptotic 
expression of scattering field (5), that is similar to (13) 
and follows from an asymptotic expression of function 

   
1

nH kr  for : 1kr 
     1 π 2 π 42e πi kк n
n kr kr H . 

The appropriate substitution in formula (6) for the scat- 
tering field, gives 

   π 42 π e ei kr t in
SC n

n

u U kr a 


 



  .  (14) 

Here multiplier before the sum of series presents the 
cylindrical wave uniformly divergent from a cavity on all 
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directions. At the same time the series of convergent azi- 
muthal harmonics is the factor that corrects the amplitude 
of this wave due to non-uniformity of its scattering on an 
azimuth and has usually name of the amplitude charac- 
teristic of scattering. Thus, the definition of value S in 
case of a cylindrical wave scattering does not differ in 
form from its definition for scattering of a plane wave [1, 
2] 

  ein
S

n

an






   .        (15) 

The actually having place the distinction between 
these cases of scattering will be shown only through dif- 
ference of amplitude coefficients an in the formulas (10), 
(11). 

For the total cross-section scattering  we have 

SCs P I  and if on the average the scattering power 

SCP  in view of independence of properties of a radia- 
tion source is like S will not change the form: 

2* 22SC n
n

P U




  a , 

the intensity of a radiation source I will change. For a 
plane wave it is equal [9,10] I  *kU2/2 that leads to 
classical result  

24
n

n

a
k







  .          (16) 

for the ultimate (at kd  ) value of  the cross section 
 of cylindrical wave scattering. Equation (16) was used 
in [3] at performance of numerical calculations of total 
cross-section scattering of a plane monochromatic wave 
by a cavity in a piezoelectric crystal.  

For the shear-axial cylindrical wave the calculation of 
intensity can be executed, proceeding from representa- 
tion of an average radial flow of energy in cylindrical co- 
ordinates of a source [11], following the formula 

*

4
I I

I I

ui
I u u

l l

       

 u 




.       (17) 

Here as radial coordinate the module of a vector l (see 
Figure 1) is used, and tilde from above designates com- 
plex conjugation. According to the first formula (5), the 
value in square brackets of expression (17) to within 
multiplier kU2 forms Wronskian 4W i kl   of Han- 
kel functions of the first and second kind of the zero or- 
der from argument x  kl [7]. By a result of the calcula- 
tions we have * 2I U l , that gives 

2* 2

2

* 2

2
π

π 2π
2

n
n

n
n

U a
l l a kl

U


 











 


  . (18) 

It is visible, that because of divergence of a cylindrical 
wave front a section scattering on unit of length of a cav- 

ity any more will not be similar  the constant value, 
and linearly depends on radial coordinate counted off 
source up to an observation point. The choice of observa- 
tion point at calculation of intensity of a cylindrical wave 
uI it is natural to connect with a location of the scattering 
obstacle i.e. with centre of a cavity. In this connection in 
(18) at definition of total cross-section scattering of cy- 
lindrical wave by a cavity S let us assume l  d, i.e. we 
shall accept 

2
2πS

n

d a




  n .           (19) 

Similar renormalization of value  on spatial coordi- 
nate was used in work [12]. 

4. Discussion of the Results  

The formulas (11), (15), (19) are used below for calcula- 
tion of scattering indicatrix      0S S S      
and section of scattering S of a shear-axial wave by a 
circular air cavity with metallized (C  ) or not metal- 
lized (C  0, 0 is the permittivity of free space) surface 
in piezoelectric ceramics PZT-4 (K2  0.5, 2 0K  ,   
730 0). As varied parameter wave distance from a source 
up to an axis of a cavity kd   was considered. 

On low frequencies 1   scattering indicatrixes 
have the characteristic dipol form: the scattering a little 
or is absent in vertical azimuths (Figures 2)   /2, 3/2, 
and, on the contrary, is maximum in location direction  
 0 (shady lobe) or direction of back scattering:   . As 
a radiation source move off a cavity (kd changes from the 
minimal value  to infinity) scattering indicatrixes of a 
cylindrical wave (see continuous curves) change only in 
the direction of a back scattering, appreciably approach- 
ing to the scattering indicatrixes of a plane wave shown 
dashed lines. Thus, the curvature of front of a scattering 
wave in area of low frequencies practically has not an 
effect for formation of a shadow. For an explanation this 
should search that at the small wave sizes of a cavity of 
scattering waves with identical efficiency come into area 
of a shadow as in case of plane, and cylindrical wave. 

Concerning back scattering here it is necessary to add, 
that at a close arrangement of a source to a cavity (kd  ) 
it will be weaker not only back scattering of a plane wave 
(Figure 2(a)), but also back scattering of the appropriate 
cylindrical wave at absence piezoelectric effect. The si- 
tuation varies at kd  1, when the back scattering be- 
comes close to back scattering of a plane wave (Figure 
2(b)) and will exceed back scattering of a cylindrical 
wave of the same curvature by a cavity of the same wave 
size, but not in a piezoelectric material. 

On moderate frequencies (1    10), as show a Fig- 
ures 3 and 4, as a radiation source is being removed off a 
cavity the form of scattering indicatrixex with growth  
becomes complicated of the appearance of more and  
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(b) 

Figure 2. Low-frequency (  0.2) scattering indicatrixes for 
the cylindrical (continuous curves) and plane (dashed cur- 
ves) shear-axial waves scattered by circular metallized cav- 
ity in piezoelectric ceramics PZT-4: a): kd  0.2 ; b): kd  3. 
 
more great number of minor lobes and decrease of inten- 
sity I of a scattering wave. The greatest difference of 
scattering indicatrix of a cylindrical wave, that expressed 
by amplification of its scattering in comparison with a 
plane wave on all azimuths with the exception forward 
direction   0, take place at the small distances between 
a radiation source and cavity when 1 1d R d   . The 
indicatrix in Figure 3(b) corresponds to the least value  
 0.25 accepted in calculations, while for the greatest 
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(b) 

Figure 3. The indicatrixes of shear cylindrical (continuous 
curves) and plane (dashed curves) wave scattering by cir- 
cular metallized cavity in piezoelectric ceramic PZT-4 on 
moderate frequencies: a)   , kd  5 ; b)   6, kd  8. 
 
value   0.8 the proper indicatrix is presented in Figure 
4(b). So in first case we have especially high distinctions 
of the indicatrixes for scattering of cylindrical and plane 
waves. On the contrary in second case the scattering indi- 
catrix of the cylindrical wave approaches in the form to 
the scattering indicatrix of the plane wave having para- 
meter   1. 

In a Figure 5 the spectra  S S    of total cross- 
section scattering of a cylindrical wave by a metallized  
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(b) 

Figure 4. The indicatrixes of shear cylindrical (continuous 
curves) and plane (dashed curves) wave scattering by cir- 
cular metallized cavity in piezoelectric ceramic PZT-4 on 
moderate and high frequencies: a)   6, kd  12; b)   10, 
kd  50. 
 
cavity, which were normalized to geometric-optical value 

 of cross-section scattering for a plane wave, 
are submitted. The horizontal dashed line here and in a 
Figure 6, where the similar spectra were calculated for 
the case of nonmetallized cavity, corresponds to the geo- 
metric-optic limit. The spectral curve coming nearer and 
nearer to horizontal dashed line as kd   and appropri- 
ate to a plane wave scattering, was calculated at the 
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Figure 5. The spectra of total cross-section scattering of a 
cylindrical shear-axial wave by the metallized cavity in pie- 
zoelectric ceramic PZT-4 at the values: kd  10, 15, 40 and 
70. 
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Figure 6. The spectra of total cross-section scattering of a 
cylindrical shear-axial wave by the nonmetallized cavity in 
piezoelectric ceramic PZT-4 at the values: kd  10, 15, 40 
and 70. 
 
large values kd  300. As against it all other spectra of 
total cross-section scattering have due to the finiteness of 
variable parameter kd  10, 15, 40 and 70 the top bound- 
ary max  kd resulting from obvious geometrical restric- 
tion (see Figure 1) d  R. 

Distinctive feature of spectra of a Figure 5 is the 
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