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ABSTRACT

Let P be a given Hermitian matrix satisfying P> =1 . Using the eigenvalue decomposition of P, we consider the
least squares solutions to the matrix equation MZN =S with the constraint PZ =ZP .
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1. Introduction

Throughout we denote the complex mxn matrix space
by C™". The symbols I,M",M™" and M| stand for
the identity matrix with the appropriate size, the conju-
gate transpose, the inverse, and the Frobenius norm of
M e C™" | respectively.

The reflexive matrices have extensive applications in
engineering and scientific computation. It is a very active
research topic to investigate the reflexive solution to the
linear matrix equation

MZN =S (1)

where M and N are given matrices. For instance,
Cvetkovi¢-Ili¢ [1] and Peng et al. [2] have given the nec-
essary and sufficient conditions for the existence and the
expressions of the reflexive solutions for the matrix
Equation (1) by using the structure properties of matrices
in required subset of C™" and the generalized singular
value decomposition (GSVD); Different from [1,2], Ref.
[3] has considered generalized reflexive solutions of the
matrix Equation (1); in addition, Herrero and Thome [4]
have found the reflexive (with respect to a generalized
{k +1} —reflection matrix P) solutions of the matrix
Equation (1) by the (GSVD) and the lifting technique
combined with the Kronecker product.

2. The Reflexive Least Squares Solutions to
Matrix Equation (1)

We begin this section with the following lemma, which
can be deduced from [5].
Lemma 1. (Theorem 3.1 in [5]) Let the canonical cor-
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relation decomposition of matrix pair [A,C] and
B,D" with AeC™",CeC™, BeC”, DeC"™ .
rank A=g, rankC=h, rankB=g’, rank D=h" be
given as

A=U(Z,0)E,'.C=U(Z.0)E,

*

B" =V (2;0)E;',D" =V (2,0)ES,

where

with the same row partitioning, and g =i+ j+t,

Aj =diag(A., Ay ) > Ay 22 A >0,

(F ) i+1 = i+j

Ay =diag (A, A ) 1> Ay 22 A > 0,AT +A]
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with the same row partitioning, and g'=i"+ j'+t’,
Zj' :diag(Zi,H,n-,Zi,”,),l >A
V — Vl V2 v3 V4 v5 V6
il jl h/_il_jf q_hl_jf_tf jf t/ ’
and let

U'FU =(F; ).F; =u/Fu.i, j,=1,,6.

Then general forms of least squares solutions X,Y
of matrix equation

AXB+CYD=F
are as follows:
F,-R  F,A" F X4
X =E, AR, Xn ARG HARG X, £
F, F, A+ FiA F X
X X X4 X
R F,-FA'A F, Y,
Y-E, F, —AAT'F,, Q Fy Yy =
K, F,, F, Yy,
Y. Y, Yo Y
where

X, =A(F, —Q)A+AF, A+ AF;, A + AF;,A

Q.R, X14a X24» X34» X44> X41= X42» X43,Y14,Y24,
Y34 ,Y44 > Y41 > Y4z ,Y43

an

are arbitrary matrices.

Theorem 2. Given M eC™™ ) Ne
S € C™Y. Then the reflexive least squares solutions to
the matrix Equation (1) can be expressed as

C(n+k)><q

B

z-1[% O )
S lo v)
Fll -R F15571 F16 x14
X = EA A_]FSI _Xzz . AF26 +AF56 Xz4 E;,
F61 F62A + FssA F66 X34
X41 X42 X43 X44
R F12 - Flszil/_\ F13 Y14
Y = Ec le _AA71F51 Q F23 Y24 E;,
F31 F32 F33 Y34
Y41 Y42 Y43 Y44
where

Xy, =A(F, —Q)A+AF,A+AF, A + AR, A
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/_\j’ :diag(ﬂ’l’-#l""!ﬂ_'i’-*-j’)?l > ﬂ’l’+1 2.“211'-#]’ >0’

22 A > 0,8+ AL =1,

i+ =

Q.R, X14, X24’ X34’ X44’ X41, X42’ X43,Y14,Y24,
Y34’Y447Y41’Y42’Y43

an

are arbitrary matrices.
Proof. It is required to transform the constrained
problem to unconstrained ones. To this end, let

P :Tdiag(ln,—lk)T

5

be the eigenvalue decomposition of the Hermitian matrix
P with unitary matrix T . Obviously, PZ =ZP holds
if and only if

diag(1,,~1,)Z = Zdiag(1,,-1,) A3)
where Z =T ZT . Partitioning

- (Z, Z
7 :[ 11 IZJ’Z11 < (Cnxn’z22 E(Ck)(k,
Z21 ZZZ

(3) is equivalent to
2, ==2,,2, =2,
Therefore,
Z =Tdiag(X,Y)T",X e C™",Y e C***. 4)
Partition T =(T,,T,) and denote
A=MT,C=MT,,B=T,/N,D=T,N,F=S. (5

According to (4), (5) and the unitary invariance of Fro-

benius norm
X 0.
MT T N-S
0 Y

=|AXB+CYD-F|.

[MzN -] -

Applying Lemma 2.1, we derive the reflexive least
squares solutions to matrix Equation (1) with the
constraint PZ =ZP which can be expressed as (2).
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