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ABSTRACT 

Let  be a given Hermitian matrix satisfying P 2P I . Using the eigenvalue decomposition of , we consider the 
least squares solutions to the matrix equation 

P
MZN S  with the constraint PZ ZP . 
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1. Introduction 

Throughout we denote the complex  matrix space 
by . The symbols  and 

m n
1m n *, ,I M M  M  stand for 

the identity matrix with the appropriate size, the conju- 
gate transpose, the inverse, and the Frobenius norm of 

m nM  , respectively.  
The reflexive matrices have extensive applications in 

engineering and scientific computation. It is a very active 
research topic to investigate the reflexive solution to the 
linear matrix equation  

MZN S                   (1) 

where M  and  are given matrices. For instance, 
Cvetković-Ilić [1] and Peng et al. [2] have given the nec- 
essary and sufficient conditions for the existence and the 
expressions of the reflexive solutions for the matrix 
Equation (1) by using the structure properties of matrices 
in required subset of and the generalized singular 
value decomposition (GSVD); Different from [1,2], Ref. 
[3] has considered generalized reflexive solutions of the 
matrix Equation (1); in addition, Herrero and Thome [4] 
have found the reflexive (with respect to a generalized 

—reflection matrix ) solutions of the matrix 
Equation (1) by the (GSVD) and the lifting technique 
combined with the Kronecker product.  

N

m n

 1k   P

2. The Reflexive Least Squares Solutions to 
Matrix Equation (1) 

We begin this section with the following lemma, which 
can be deduced from [5].  

Lemma 1. (Theorem 3.1 in [5]) Let the canonical cor-

relation decomposition of matrix pair  ,A C
,q D

 and 
 with * *,B D , ,m n m k p l qA C B        . 

rank A g , rank C h , rank , rankB g  hD   be 
given as  

   1 10 , 0A A C C ,A U E C U E      

  * 1 *0 , 0B B D DB V E D V E 1,      

where 
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with the same row partitioning, and g i j t   ,  

 1 1diag , , ,1 0,j i i j i i j              

  2 2
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j i i j i i j j

jI
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with the same row partitioning, and ,g i j t         1 1diag , , ,1 0,j i i j i i j                    

 

  2 2
1 1diag , , ,1 0, ,j i i j i i j j j jI                          

,6

 

 

1 2 3 4 5 6 ,
v v v v v v

V
i j h i j q h j t j t

 
                

 

and let 

 * *, , , , 1,ij ij i jU FU F F u Fu i j    .  

Then general forms of least squares solutions ,X Y  
of matrix equation  

AXB CYD F   

are as follows:  
1

11 15 16 14
1

*51 22 26 56 24

61 62 65 66 34

41 42 43 44

,A B

F R F F X

F X F F X
X E E

F F F F X

X X X X





  
 
    

    
  
 

 

1
12 15 13 14

1
*21 51 23 24

31 32 33 34

41 42 43 44

,C D

R F F F Y

F F Q F Y
Y E E

F F F Y

Y Y Y Y





   
 

   
  
 

 

where  

 22 22 25 52 52X F Q F F F             

and  14 24 34 44 41 42 43 14 24

34 44 41 42 43

, , , , , , , , , ,

, , , ,

Q R X X X X X X X Y Y

Y Y Y Y Y

,

are arbitrary matrices. 
Theorem 2. Given   

. Then the reflexive least squares solutions to 
the matrix Equation (1) can be expressed as 

  ,m n kM     ,n k qN  
m qS 

*0
,

0

X
Z T

Y

 
  

 
T               (2) 

1
11 15 16 14

1
*51 22 26 56 24

61 62 65 66 34

41 42 43 44

,A B

F R F F X

F X F F X
X E E

F F F F X

X X X X





  
 
        

  
 

 

1
12 15 13 14

1
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41 42 43 44

,C D

R F F F Y

F F Q F Y
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Y Y Y Y





   


   









 

where 

 22 22 25 52 52X F Q F F F              

and  14 24 34 44 41 42 43 14 24

34 44 41 42 43

, , , , , , , , , ,

, , , ,

Q R X X X X X X X Y Y

Y Y Y Y Y

,

are arbitrary matrices. 
Proof. It is required to transform the constrained 

problem to unconstrained ones. To this end, let  

  *diag ,n kP T I I T   

be the eigenvalue decomposition of the Hermitian matrix 
 with unitary matrix T . Obviously,  holds 

if and only if  
P PZ ZP

  diag , diag ,n k n k I I Z Z I I           (3) 

where *Z T ZT . Partitioning  

11 12
11 22

21 22

, ,n n k kZ Z
Z Z Z

Z Z
  

  
 

  ,  

(3) is equivalent to  

12 12 21 21, .Z Z Z Z     

Therefore,  

  *diag , , , .n n k kZ T X Y T X Y         (4) 

Partition  1 2,T T T  and denote  
* *

1 2 1 2, , , , .A MT C MT B T N D T N F S        (5) 

According to (4), (5) and the unitary invariance of Fro- 
benius norm  

*0

0

.

X
MZN S MT T N S

Y

AXB CYD F

 
   

 
  

 

Applying Lemma 2.1, we derive the reflexive least 
squares solutions to matrix Equation (1) with the 
constraint PZ ZP  which can be expressed as (2). 
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