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ABSTRACT 

We give singular value inequality to compact normal operators, which states that if A  is compact normal operator on 
a complex separable Hilbert space, where 1 2A A iA   is the cartesian decomposition of A , then 

     1 2 1 2

1

2
j j js A A s A s A A     for 1,j 2,   Moreover, we give inequality which asserts that if A  is 

compact normal operator, then      1 2j
*

1 22 j j 2s A s A AA  s A iA   for 1j , 2,   Several inequalities will be 

proved. 
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1. Introduction 

Let  B H  denote the space of all bounded linear op- 

erators on a complex separable Hilbert space H, and let 

 K H


 denote the two-sided ideal of compact operators 

in B H . For , the singular values of T , 

denoted by  are the eigenvalues of the 

positive operator 

 T K H

   1 2,s T s T ,

 1 2*T T T  as    1 2s T s T   

and repeated according to multiplicity. Note that 

   *
j j js T s T s T   for 1,2,j    It follows Weyl’s 

monotonicity principle (see, e.g., [1, p. 63] or [2, p. 26]) 
that if  are positive and , then  K H,S T S T

   j js S s T for 1j   The s ingular  values  , 2,

of  and  are the same, and they consist  S T 



0

0

T

S

 

 

of those of  together with those of . Here, we use 
the direct sum notation  for the blockdiagonal  

S T
S T

operator  defined on 
0

0

S

T

 

 

H H . 

The Jordan decomposition for self-adjoint operators 
asserts that every self-adjoint operator can be expressed 
as the difference of two positive operators. In fact, if 

 A B H  is self-adjoint, then  where  ,A A A  

an d A A   are the positive operators given by  

2

A A
 and 

2

A A
A 

 , see [1]. A 


Let  be any operator, we can write  in the form  A A

1 2A A iA  , where 
*

1 2

A A
A


  and 

*

2 2

A A
A

i


  are  

self-adjoint operators, this is called the Cartesian de- 
composition of the operator . If  is normal, then A A

1 2 2 1A A A A . 
Audeh and Kittaneh have proved in [3] that if 

 , ,A B C K H  such that , then * 0
A B

B C

 
 

 

   j js B s A C            (1.1) 

for 1,2,j     
Also, Audeh and Kittaneh have proved in [3] that if 

 ,A B K H
and 

 such that  is self-adjoint,  A 0,B 
A B  , then 

      2 j js A s B A B A        (1.2) 

for 1,2,j    
In addition to this, Audeh and Kittaneh have proved in 

[3] that if  ,A B K H  be self-adjoint operators, then 

      j js A B s A B A B           (1.3) 

for 1,2,j    
Zhan has proved in [4] that if  ,A B K H  are posi- 
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tive, then 

   j js A B s A B              (1.4) 

for 1,2,j    Moreover, it has proved in [3] that (1.3) is 
a generalization of (1.4).  

Hirzallah and Kittaneh have proved in [5] that if 
 ,A B K H , then 

   2j js A B s A B             (1.5) 

In this paper, we will give singular value inequalities 
for normal operators: 

Let  be normal operator in A  K H . Then  

    1 2 1 2

1

2
j j j s A A s A s A A        (1.6) 

for 1,2,j    
We will give singular value inequality to the normal 

operator *A iA , where  is normal: A
Let  be normal operator in A  K H . Then 

    *
1 2 1 22 2j j j s A A s A iA s A A       (1.7) 

for 1,2,j     

2. Main Results 

We will begin by presenting the following theorem for 
complex numbers 

Theorem 2.1. Let x a ib   be complex number. 
Then 

1

2
a b x a b            (2.1) 

Also, 

1

2
a b x a b            (2.2) 

Proof. The right hand side of the inequalities is well 
known. To prove the left hand side, 

 

 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1
2 2 2

2 2 2 2 2
a b a b a ab b a a b b a b a b x                

Moreover,  2 2 2 2 21 1 1
2 .

2 2 2
a b a b a ab b a b x          

 
Now, we will present operator version of Theorem 2.1, 

inequality (2.1). 
Theorem 2.2. Let  be normal operator in A  K H , 

where 1 2A A iA   be the Cartesian decomposition of 
. Then  A

     1 2 1 2

1

2
j j js A A s A s A A     

for 1,2,j    
Proof. Let 1 2A A iA   be the Cartesian decomposi-

tion of the normal operator , which implies that A

1 2 2 1A A A A . Now, * 2
1

2
2A A A A  , it follows that  

* 2 2
1 2 .A A A A A    In fact    j js A s A  for 

 1,2,j    By using Weyl’s monotonicity principle [1] 

and the inequality 2 2
1 2 1 2A A A A   , we get the  

right hand side of the theorem. To prove the left hand 
side of the inequality, we will use the inequality which is 
well known for commuting self-adjoint operators and it 
asserts that 

   2 2 2
1 2 1 20 2A A A    A         (2.3) 

This implies that 



But it is known that   1 2 1 2 ,j js A A s A A     it fol- 
lows Weyl’s monotonicity principle [1] and the inequal- 
ity (2.4) that 

   1 2 2j js A A s A            (2.5) 

for 1,2,j     
Inequality (2.5) is equivalent to saying that 

  1 2

1

2
j j s A A s A   

for 1,2,j     
Remark 1. (i) Equality holds in the right hand side of 

Theorem 2.2 if either 1 0A   or . 1 0A 
(ii) Equality holds in the left hand side of theorem 2.2 

if 1 2A A . 
We will present operator version of Theorem 2.1, ine- 

quality (2.2). 
Remark 2. Let  

0
,

0

A
X

A

 
   

 

where  is normal operator. Then  is normal ope- 
rator with 

A X

1 2X X iX   is the Cartesian decomposition 2 2
1 2 1 22A A A A             (2.4) of . X
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*

1 *

0
2

0
2

A A

X
A A

 
 
 
 
  

 and 

*

2 *

0
2

0
2

A A

iX
A A

i

 
 
 
  
  

. 

It follows that 

*

1 *

0
2

0
2

A A

X
A A

 
 
    
  

, and 

*

2 *

0
2

0
2

A A

X
A A

 
 
    
  

. 

 
Now, by direct calculations and applying Theorem 2.2 
we get 

    1 2 1 2

1

2
j j j s A A s A s A A       (2.6) 

for 1,2,j     
Remark 3. We note that the right hand side of the ine- 

quality (2.6) is the same as the inequality (1.6), but the 
left hand side of the inequalities (1.6) and (2.6) says that 
the singular value of the addition or subtraction of the 
Cartesian decomposition for the normal operator  di- 
vided by 

A
2  is less than or equal to the singular value 

of the normal operator itself. 
As an application of the Theorem 2.2, we will deter- 

mine upper and lower bounds for singular values of the 
normal operator *A iA , where  is normal. A

Theorem 2.3. Let  A K H  be normal operator, 
where 1

A . Then 

     *
1 2 1 22 2j j js A A s A iA s A A      

for 1,2,j    
Proof. Note that  is normal operator, so 

we can write the Cartesian decomposition of  as  

*T A iA 
T

1 2T T iT  , 

where 
   * *

1 2

A A i A A
T

  
 , and  

   * *

2 2

A A i A A
T

i

  
 , 

where the cartesian decomposition of  is given by 

1 2

A
A A iA  . By making comparison of  and  we 

see easily that 
1T 2T

1T T2 . It follows that  
   * *

12A A A  1 2T T A  22AA i  . Moreover, 
2A A iA   is the Cartesian decomposition of  

 

       

  

1 2
1 2* * * * * * * *

1

1 2

1 2 1 2
1 2 1 2

2 2 2 2

2 2 2 2 1
2 2 .

4 2

A A i A A A A i A A A A iA iA A A iA iA
T

A A A A
A A A A

                      

  
     
 

 

 
Similarly, 2 1T A A  2 . Now, apply Theorem 2.2 to 

get  

     1 2 1 2

1
2 2 2

2
j j js A A s T s A A     (2.7) 

for 1,2,j    This is equivalent to saying that  

     *
1 2 1 22 j j j2s A A s A iA s A A      

for 1,2,j     
We will give simple and new proof to the inequality  

(1.2). 
Theorem 2.4. Let  ,A B K H

 B A B 
 such that  is 

self-adjoint, , then 
A

0,and

      2 j js A s B A B A     

for 1,2,j    
Proof. Since  is self-adjoint operator, we can write  A

A  in the form 
   

,
2

B A B A
A

  
  apply the in- 

equality (1.4) we get 
 

          1 1

2 2j j j s A s B A B A s B A B A         

 
which is equivalent to saying that        2 j js A s B A B A     
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for 1,2,j    
Audeh and Kittaneh separates Jordan of self-adjoint 

operator in the inequality (1.3). Here we will give a 
shorter proof. 

Theorem 2.5. Let  ,A B K H  be self-adjoint ope- 
rators. Then 

      j js A B s A B A B         

for 1,2,j     
Proof. Since  and  are self-adjoint operators, 

we can write  in the form  and similar- 
ly we will write  in the form . Apply the 
inequality (1.4) we get  

A

B

B
A ,A A A  

B B  B

   j js A B s A A B B         

   
   
   

j j

j

j

s A B s A A B B

s A B A B

s A B A B

   

   

   

    

   

   

 for 1,2,j


    

We will present the following two theorems as an ap- 
plication to the inequality (1.5). 

Theorem 2.6. Let  A K H  be self-adjoint opera- 
tor. Then 

     1 2 1 22 2 2j j s A s A A A A       (2.8) 

for 1,2,j     
Proof. It was proved in Theorem 2.2 that if  is 

normal operator with Cartesian decomposition  

1 2

A

A A iA  , then    1 2j js A s A A   for 1j , 2,   
from this, it follows that  

        
    
    

1 1 2 2 1 2

1 2 1 2

1 2 1 2

2 2

2 2 2

j j

j

j

s A s A A A A A A

s A A A A

s A A A A

 

 

     

   

   

 

for 1,2,j    
The following theorem is the second application of the 

inequality (1.5). 
Theorem 2.7. Let  A K H  be self-adjoint opera-

tor. Then 

  j j s A s A A           (2.9) 

for 1,2,j    Moreover,  

   j js A s A A             (2.10) 

for 1,2,j    
Proof. It is well known that 

2

A A
A 

 , so using 
the inequality (1.5) we get 

   2
2 2 2j j j j

A A A A
s A s s s A A     

      
   

for 1,2,j    
Similarly, ,

2

A A
A 

  so using the inequality (1.5) 
we get  

     2
2 2 2j j j j

A A A A
s A s s s A A      

      
   


 

for 1,2,j    
Bhatia and Kittaneh have proved in [6] that if 

 ,A B K H , then 

      * * * * * *
j js AB BA s A A B B AA BB      

for 1,2,j    For related Cauchy-Schwarz type inequa- 

lities, we refer to [2] and references therein. Here, we 
will present similar new inequality. 

Theorem 2.8. Let  ,A B K H  be operators. Then 

      * * * *
j js AB BA s A A B B AA BB       (2.11) 

for 1,2,j     
Proof. Suppose *

0

0

A
X

B

 
  
 

 and *

0
.

0

B
Y

A

 
  
 

 
This implies that  

*
*

* * *

AA AB
XX

B A B B

 
  
 

, and  
* *

* 0
.

0 0

A A BB
X X

 
  
 

On the other hand, we have 
*

*

* * *

BB BA
YY

A B A A

 
  
 

, and . 
* *

* 0

0 0

B B AA
Y Y

 
  
 

Since *XX  and  are positive operators, then  *YY
* *

* *

* * * * * *

AA BB AB BA
XX YY

B A A B B B A A

  
   

  
 is positive  

operator. Now by applying the inequality (1.1), we get 

      * * * *
j js AB BA s A A B B AA BB      

for 1,2,j    
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