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ABSTRACT 

In this paper, we study the global and pullback attractors for a strongly damped wave equation with delays when the 
force term belongs to different space. The results following from the solution generate a compact set. 
 
Keywords: Strongly Damped; Pullback Attractor; Global Attractor; Delays 

1. Introduction 

Let  be a bounded domain with smooth boun- 
dary , we study the following initial boundary value 
problem  
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(1.1) 

where  , t f h t u  is the source intensity which may 
depend on the history of the solution, ,   are the 
positive constants,   is the initial value on the interval 
 ,r 


 where , and t  is defined for 0r  u
,0r t    as    tu u  . The assumption on 

 g u  and  f x  will be specified later. 
It is well known that the long time behavior of many 

dynamical system generated by evolution equations can 
be described naturally in term of attractors of cor- 
responding semigroups. Attractor is a basic concept in 
the study of the asymptotic behavior of solutions for the 
nonlinear evolution equations with various dissipation. 

There have been many researches on the long-time be- 
havior of solutions to the nonlinear damped wave equa- 
tions with delays. The existence of random attractors has 
been investigated by many authors, see, e.g., [1-4]. A new 
type of attractor, called a pullback attractor, was proposed 
and investigated for non-autonomous or these random 
dynamical systems. The pullback attractor describing this 
attractors to a component subset for a fixed parameter 
value is achieved by starting progressively earlier in time, 
that is, at parameter values that are carried forward to the 
fixed value. see [5-20]. However, to our knowledge, in 
the case of functional differential equations of second 
order in time, there is only partial results. 

Recently, In [5], some results on pullback and forward 
attractor for the following strongly damped wave equa- 
tion with delays   
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have been analyzed. 
In this work, first, we apply the means in [3] to 

provide the existence of global attractor, for the 
dynamical system generated by the initial value problem 
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(1.1). The key is to deal with the nonlinear terms and the 
delay term is difficult to be handled, so we aimed at 
showing that it is dissipative and the solution is bounded 
and continuous with respect to initial value. Hence we 
can discover the global attractor. Then, we aim to obtain 
the pullback attractor. The technology we use is intro- 
duced in [1], that is, we divide the semigroup into two: 
the one is asymptotically close to 0, while the other is 
uniformly compact, so we can get the pullback attractor. 

Now, we state the general assumptions for problem 
(1.1) on  and . :g  

u

: Hh C H 
Let , then there exist positive con-    

0
dG u g s s 

stants  such that the followings hold 
true  

 1,2, ,5iC i   

(G1).  0g H
 

;  
(G2). 10g C  ;  

(G3).    2 1 ,g z C z z
     ;  

(G4).  liminf 0
z

g z z


 ;  

(G5). ;       2
40 ,g z g z C z z   

(G6). 
   3

2
liminf 0
z z


g z z C G z

;  

(G7). .   5 0,C g z z    
Vu  For any , set  3 dJ u G u


x  , by 1 7G G , 

there are  and 6 0,C C 0 0   , for any 0  , 
we have  

    
 
  

2
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2

2 2

,

;

, .

;g u u u C J u u C

J u u C
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H1.  is continuous;   , ,HC t h t H    
 , ,0 0t h t  


H2. ;  
H3.  such that 0L h , , Ht C       

   , ,
H

h C
h t h t L      ;  

H4.  such that 0 0, 0hm C  
    0

00, , , , , ;m m t u v C r t H     

   

 

   2 2, , d
t t

s s h msr
s u h s v s C e u s v

  
  

2
d ;mse h s s


 

H5. , and there exists  such 
that, for any  

1 ;Hh C C H 
,

0C 
Ht   

   , HC H   
C , the Frechet derivative 

 satisfies  ;h t

     ;
, 1

HH CC H
h t C  


  .  

The rest of this paper is organized as follows. In 
Section 2, we introduce basic concepts concerning global 
and pullback attractor. In Section 3, we obtain the 
existence of the global attractor. In Section 4, we obtain 
the existence of the pullback attractor. 

2. Preliminaries 

In this section,firstly, we recall some basic concepts 
about the global attractor.  

Definition 2.1 ([3]) Let X  be a Banach space and 

  
0t

S t


 be a family of operators on X . We say that 

  
0t

S t


 is norm-to-weak continuous semigroup on X , 

if   
t

S t
0

 satisfies:  

[1)]    0 identifyS Id ;  

[2)]      S t S s S t s  ; 

[3)]    n nS t x S t x  if  and nt  t nx x  in 

X .  
Remark :  The strong continuous semigroup and the 

weak semigroup are both the norm-to-weak continuous  
Definition 2.2 ([3]) The semigroup 

0t
 is called 

satisfying Condition (C) in 
 S t

X  if and only if for any 
bounded set  of B X  and for any , there exist a 
positive constant 

0
Bt  and a finite dimensional subspace 

1X  of X, such that   , BPS t x x B t t   is bounded 
and  

    for any and ,BX
I P S t x t t x B     

where  is the canonical projector.  1

Lemma 2.1 ([3]) Let 
:P X X

X  be a Banach space and 

  
0t

S t


 be a norm-to-weak continuous semigroup on 

X . Then   
0t

S t


 has a global attractor in X   

provided that the following conditions hold:  

1)   
0t

S t


 has a bounded absorbing set  in 0B X ;  

2)   
0t

S t


 satisfies Condition (C) in X .  

Then, we state the concepts and some result about the 
process and the pullback attractor. 

Instead of a family of the one-parameter map  S t , 
we need to use a two-parameter semigroup or process 
 ,U t   on the complete metric space X ,  ,u t    

denotes the value of the solution at time  which was 
equal to the initial value 

t
  at time  . 

The semigroup property is replaced by the process 
composition property  

     , , , for allU t U r U t r t r   ,    

and, obviously, the initial condition implies 
 ,U I  d .  
Definition 2.3 Let  be the two-parameter 

semigroup or process on the complete metric space 
U

X . 
A family of compact set 

t
 is said to be a 

pullback attractor for  if, for all 
  t 

U   , it satisfies 
[1)]      ,U t       for all t  , and  
[2)]      0tlim dist ,U t t s ,

s X    , for all 
bounded X t, and all .  
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Definition 2.4 The family   B t
t

1) pullback absorbing with respect to the process , 
if for all  and all bounded , there exists 

 such that  for all 

 is said to be  
U

t



D X
 s D B   0DT t 


,U t t t 

Ds T t ;  
2) pullback attracting with respect to the process , 

if for all t , all bounded , and all , 
there exists  such that for all 

U


,D

D X 0
  0T t   ,Ds T  t   

    dist , , ;X U t t s D B t    

3) pullback uniformly absorbing (respectively 
uniformly attracting) if  in pact (a) (respectively 

 in part (b)) does not depend on the time 
 DT t

 ,DT t t .  
Theorem 2.1 Let  ,U t   be a two-parameter 

process, and suppose  is continuous 
for all 

 , :U t  X X
t 

{

. If there exists a family of compact pullback 
attracting sets 

t , then there exists a pullback 
attractor t , such that  for all 

, and which is given by  

 B t
)}


t(     t B t 

t
     , where , .D D

D X n s n

t t U t t
  

     


 s D  

We set , where E V H     1 2
0 ,V H H L   

1

, 
which are Hilbert spaces for the usual inner product and 
associated norms. we denote by   the first eigenvalue 
of  in V . 

Our problem can be written as a second-order 
differential equation in H :  

     
        

, ,

, ,

tu u u u g u f x h t u t

u t t u t t t r 
,

, .

  

    

           


       
(2.1) 

3. Existence of the Global Attractor 

In this section, our objection is to show that the 
well-posed of the solution and the existence of global 
attractor for the initial boundary value problem (1.1), we 
assume that .  2f L 

Let 11
0 min , ,

4 2


 

 
   

 
 and 0, 0   , then  

by the transformation v u u  . The initial boundary 
value problem (2.1) is equivalent to  

   
  

   
1

, , ,t

v v

v u

f x h t u t

    

  
u

g u



    

     

  

            (3.1) 

with the initial value conditions  

       , ,v t t t t r .            

Theorem 3.1 Assume that the hypotheses on g  and 
 hold for all  and , h  T

,u u E  2f L  , 

E

 
are the positive constants. Then the initial boundary 
value problem (3.1) has the unique solution  T

u v,   
for all t  .  

Proof. Taking the inner product of the Equation (3.1) 
with  in v H , we find that  

     

    
     

2 2

2 2

1 d
, ,

2 d
1 d

1 ,
2 d

, , , .t

v v v u v
t

u u g u
t

f x v h t u v

     

  

    


   

 

v

v    (3.2) 

Since  v u t u   and 11
0 min , ,

2 4 2


 

 
   

 
,  

we deal with the terms in (3.2) one by one as follows  

     2 3
, ;

4
v v v v

       2
      (3.3) 

    
1

2
2 2 2 2

1

,

;
4 4 2

u v u v u v

v u u v

     
 

   



   

     

1     (3.4) 

       

    2

6

d
, ,

d
d

;
d

g u v J u g u u
t

J u C J u u C
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  (3.5) 

   21
, ,

4th t u v h v



  2

;           (3.6) 

   21
,

4
2

f v f



  v             (3.7) 

By (3.3)-(3.7), it follows from that  

    

   

2
2 2

1
1

2

6

2 2

d
1 2

d 2

2 1 2
4

2 2
2 .

v u J u
t

u C J u

h f C

  


   


 

 
      

 

      
 

  

2
v

 

Since 11
min , ,

4 2


 

 
  

 
 and 

1
0

4 2

   , this 

will imply   2 1 1
4

           
 

, then we 

have 

    
   

2 2

2 2

1 6

22

d
1 2

d

2 1 2

2 2
| | 2 .

v u J u
t

v u C

h f C



   


 

  

   

  

J u   (3.8) 

Set  0 1min 2 , , 2C    6C , then (3.8) can be writ- 
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Hence, we can get the following inequality  
As our assumptions ensure that 
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2 2
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v u J u
t

m C v u J u

h f C






 

  

    

  

  
2 1

1
0

2
0

1 2
hC

C


  



  
 

, then we can choose 

 small enough such that  00,m m 

 
2 1

1
0

2
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1 2
hC

m C


  



  
 

. For this choice, we have  
By integrating over the interval  , t , we deduce  
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2
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 ds  

(3.14) 

Noticing 
1

0
4 2

   , we obtain  

   2 2
2 21 2

.
1 2 1 2

Cv u J u
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 (3.11)       
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(3.15) 

In the Bounded set ,V H , for any , there 
exists a constant  such that  

D C u D
d

2 2 2 ;u v d            (3.12) 

   2 2 21 2v u J u    .d      (3.13) 

Hence, by (3.12)-(3.14) and the choice of (3.10)-(3.13) means that  



G. G. LIN  ET  AL. 213

 
2 1

1
0

2
0

1 2
hC

m C


  



  
 

, (3.9) can be rewritten  

    

 
    

   
  

     

 

2 2

2 1
2 1

0

2 2

2 1
2 1

2 1 2 1 2
1 1

2 1
2 1

e 1 2

2
e

1 2

e 1 2 d

42
e e e e

1 2

4 2
e e e

1 2 1 2

2
e 1

1 2

mt

m h

t ms

h m rmt m m

h mt m mh

m h

v u J u

C
d m C

v u J u s

C C
f

m m

C C C rd

m

C r
d





  

  






  




   

 
     


  






 



  

 
       

   

   
 

  
   

 
      



 

   

 
  

2

2 1
1

2 1
1

2
e e

4
e e

1 2

4
e e .

1 2

mt m

h mt m

h m rm

f
m

C C

m

C C

m



 

 




  


  








 
 

 
 

 (3.16) 

 So we can get by (3.16)  

    

 

 

   

 
  

2 2

2 1
2 1

2

2 1
1

2 1
1

1 2

2
e e 1

1 2

2
1 e e

4
1 e e

1 2

4
e e e e .

1 2

m mt h

m mt

h m mt

h m rm mt mt

v u J u

C r
d

f
m

C C

m

C C

m





 

 




  




  


  










 

  

 
     

 

 
 

 
 

 

which implies,for t    

    

 

 

2 2

2 1
2 1

2 1
2 1

1 2

2
e e 1

1 2

42
.

1 2

m mt h

h

v u J u

C r
d

C C
f

m m








  


   






  

 
     

 
 

      (3.17) 

If we denote 

 


 

2 1
2 12

0

2 1
2

1
0

42
,

1 2

2
1

1 2

h

h

C C
f

m m

C r




   




  





 
 

 
 

, 

then (3.17) yields that  
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0 0
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.
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     (3.18) 

which means that the initial boundary value problem (3.1) 
has the solution  T

,u u E  . 
Now, we prove the uniqueness of the solution. Assume 

that    ; ,u u      and    ; ,v v      are the two 
solutions of the initial boundary value problem (3.1), 

,   are the corresponding initial value,we denote 
     w u v     . Therefore we have  

       , ,t tw w w w g u g v h t u h t v           .  

we take the inner product of the above equation with w  
and we obtain  

      
    

2 2 2 21 d
,

2 d

, , , .t t

w w w w g u g v w
t

h t u h t v w

       

 
 

     (3.19) 

Since  

     5, ;g u g v w C w w    

         2 2
2 , , , , ,t t t th t u h t v w h t u h t v w .      

So (3.20) can yields that  

 
   

2 2
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d
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7, ,t th t u h t v C w w     .     (3.21) 
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Integrating (3.21) over the interval  , t , we can get  
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Combining the Gronwall Lemma, we get  

 
   

   1

,

2 2

21 2
11 e , fo

V H

t
h C

w t w t

C r t  r all .   

 

   
  (3.22) 

If ,   stand for the same initial value, there has  

   2 2
0.w t w t    

that shows that  

   2 2
0, 0.w t w t    

that is  

  0.w t   

therefore  

.  u v

we get the uniqueness of the solution. So the proof of the 
theorem 3.1. has been completed.  

By the theorem 3.1,we obtain the global smooth 
solution  continuously depends on the initial 
value 

 ,u u
 ,


  , the initial boundary value problem (1.1) 

generates a continuous semigroup 

        , : ; , ,
t

S t S t E E u u S t


 


   . 

Then     , ,B u u u u
0 X 0    is a bounded 

absorbing set for the semigroup   
t

S t


 generated by 
(1.1). 

Under the assumption on g  and f , we can get the 
nonlinear term  g u  is compact and continuous, 
 f x
0C

 is continuous. Next, our object is to show that the 
 semigroup  satisfies cindition C.  S t 

0t
Theorem 3.2 Assume that the hypotheses on g  and 
 hold for all , h  ,u u E

  ,   are positive con- 
stants. Then the  semigroup 

t

0C   S t


 associated 
with initial value problem (3.1) satisfies , 
that is, there exists 

cinditionC
Nm  and  , for any 

 such that  
 ,T T B R

,N m t T 

 2 2

2 21 , is the positive constant.v u C C    

Proof. Let j  be the eigenvalues of  and u jw  
be the corresponding eigenvectors, , without 
loss of generality, we can assume that 

1, 2,
1 2

j 
   , and 

lim m
m




  . 

It is well known that  
1j j

w



 form an orthogonal basis 

of 1
0H . We write  

 1 2, , ,m mH span w w w   

Since 1
0f H  and f  is compact, for any 0  , 

there exists some  such that  mN

   ,
2mI P f


               (3.23) 

  , for all 0,
2m R I P g u B R


        (3.24) 

where m  is orthogonal projection and  
is the radius of the absorbing set. For any 

1
0:mP H H R

 , tu u E , 
we write  

        
   1 1 2 2

, , ,

, , .

t m m t m m

t t

u u P u P u I P u I P u

u u u u

   

 
t

 

We note that  

     2 2 2, ,m mh I P h g I P g f I P f      ,m  

Taking the inner product of the second equation of 
(3.1) with 2  in v  2L  , After a computation like in 
the proof of Theorem 3.1, we can yield that  

 

    

  
    
     

2 2

2 2

2

2 2 2

2

2 2 2

2 2 2 2

1 d
1

2 d

,

1 ,

, , , .t

v u
t

u v v

u g u v

f x v h t u v

  

   

 

   

  

  

 

2

2v

 (3.25) 

This is the same as in the proof of the Theorem 3.1, 
except for a replacement of 1  with 1m  . Combined 
with (3.23) , (3.24) and (3.4), then we have  

  
 

2 2

2 2 1

2
2 2

2

1 d 3 5
1

2 d 4 2

1 .
2

m

h

v u
t

L
u

  

  



      
 

   

2

2v

 

Choose 1

3 5
min ,1

4 2mk
  

    
 

 , we can get  

    
2

2 2 2 2 2
2 2 2 2

1 d
1 .

2 d 2
hL

v u k v u
t  


       

By Gronwall lemma, we can obtain  

 
2 3

2 2

2 21
2
hL

v u
k







    

for all ,t N m   and  ,u u E  . This shows that 
Condition C is satisfied, and the proof is completed.  
Due to Lemma 2.1, Theorem 3.1 and Theorem 3.2, we 
obtain the following Theorem  

Theorem 3.3 Assume that the hypotheses on g  and 
 hold for all , h  ,u u E

  , 


 are positive 
constants. Then the  semigroup 

t

0C  S t


 associ- 
ated with initial value problem (3.1) has a global 
attractor in E.   

4. Existence of the Pullback Attractor 

In this subsection, we assume that f H , we aim to 
study the pullback attractor for the initial value problem 
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(1.1). 
From Theorem 3.1, the initial value problem (1.1) 

generates a family two-parameter semigroup  ,U    in 
, which can be defined by  ,V HC

     ,, ; , , ,t VU t u t C         H  

Lemma 4.1 Let ,   be the two initial values for the 
problem (1.1),    is the initial time, Denote by 
   ; ,u u      and    ; ,v v      the corresponding 

solutions to (1.1). Then, there exists a constant 1 0   
which is independent of initial value value and time, such 
that the following estimates hold:  

       

   1

,

2 2

21 2
11 e , fo

V H

t
h C

u t v t u t v t

C r t  r all ;   

   

   
  (4.1) 

   1

,

2

21 2
11 e , for al

V H

t t

t
h C

u v

C r t r    



    l .

r

  (4.2) 

Proof. We denote , by (3.22), we can get 
(4.1) easily. 

w u v 

If we consider t   , then t     for any 
 ,0r   , and  

   

   

   

1

,

1

,

2 2

21 2
1

21 2
1

1 e

1 e

V H

V H

t
h C

t
h C

w t w t

C r

C r .

  

 

 

  

  

 



   

  

  

 

Thus,    1

,

2 21 2
11 e ,

V H

t
t h C

w C r t r          . 

Theorem 4.1 The mapping  is 
continuous for any 

  , ,, : V H V HU t C C 
t  .  

Proof. Let ,, V HC  
t

 be the initial value for the 
problem (1.1) and  . Denote by    ; ,u u      
and   v v ; , 

w u
 



 the corresponding solutions to (1.1). 
Then, writing again  we obtain the following. 
If 

v 
,t r   , then      tw t t       and  

   

   1

,

2 2 2 2

21 2
11 e

V H

V H

C C

t r
h C

w t w t

C r  

   

    

      

   .
 

Thus, we have  

   

   1

,

2 2

21 2
11 e ,

V H

t r
h C

w t w t

C r t r     

 

      ,
 

whence  

   1

,

2 21 2
11 e ,

V H

t r
t h C

w C r t  ,        



 

which implies the continuity of  ,U t  .  
Theorem 4.2 Assume that the hypotheses on g  and 

 hold with , h 0 0m  ,   are the positive constants.  

Suppose in addition that 1 12 1hC 2    . 

Then exists a family   
t

B t
  of bounded sets in   ,V HC

which is uniformly pullback absorbing fir the process 
 ,U   . Moreover,  B t B

C .

 

0  for all , where  
is the bounded set in   

t 0B

,V H

Proof. By (3.18), we can have  

 
  

2 2

22 2
0 0

; , ; ,

e ,m t

u t u t

d t

   

.  



   
 

and, in particular,  

     22 2 2 2
0 0; , ; , , .u t u t d t            (4.3) 

Moreover, as   ; ,u t t       and 
   t; ,u t       for ,t r  

t r
, then inequality 

(4.3) holds true for   . 
If we take now t r  , then for all  ,0r    we 

have t     and so  

      22 2 2 2
0 0; , ; , e ,m tu t u t d           (4.4) 

or, in other words,  

 

  

,

2

22 2
0 0

,

e , ,

V HC

m t

U t

d t r

 

    .D     
 

Therefore, there exists  such that  rTD 

 
,

2 2
0, , ,

V H
DC

U t t s t s T D        , .

HC

 

which means that the ball  is   
,

0
0 ,0,

V HC VB B  

uniformly pullback absorbing for the process  ,U  
t

.  
:Remark  On the one hand, observe that if 0   

and , then 0t t
    0 0; ,u t t s t t; ,t su t            and 
    0 0; ,s u t t s t t; ,u t t         

0

 with 
s t t s   . As a sequence of (4.4) we have  

 
,

2 2
0 0 0 0, , , ,

V H
DC

U t t s t t t s T D         , .  

or ,we have  0 0, , ,0 , ,Dt t t r s T  D         

   2 2 2
0 0; , ; ,u t t s u t t s 0 .           

On the other hand, (4.3) implies, 

0 0 0, , , ,t t t s t t s r D         ,  

     22 2 2 2
0 0 0 0; , ; , ,u t t s u t t s d t .            

Theorem 4.3 Under the assumption in Theorem 4.1. 
Then there exists a compact set ,V H  which is 
uniformly pullback attracting for the process 

2B C
 ,U   , 

and consequently, there exits the pullback attractor. 
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t

t
 . Moreover,     ,D A Vt

t C


  for all 

.  t
Proof. For each   , the norm 

,

2 2 2
, V H

V HC C
C


         is equivalent to 

,0
:

V HC
   . This allows us to obtain absorbing ball for  

the original norm by proving the existence of absorbing 
balls for this new norm for some suitable value of  .  

Indeed, let us denote    ,0, :V HB C 
      . 

Noticing that for  2 1
1 max 2,1 2c 1    it follows that  

 

,

2 2 2

2 2 2

2 22 1
1

2

1

2 2

1 2 2

,

V H V H

V H

V H

C C C

C C

C C

c


    

    

    





   

   

   



2

HC  

we then have    1 2
0 10, 0,B B c   . 

Let ,V H  be a bounded set, i.e. there exists 
 such that for any 

D C
0d  D   it holds  

2 2 2 2
1 .

V HC C
c d


        

Denote by    ; ,u u      the solution of the 
problem (2.1), and consider the problems:  

   
     

( ) , , ,

0, 0, , .

tv v v v g u f x h t u t

v t v t t r

  

 

           


   
(4.5) 

        
0, ,

, ,

w w w w t

w t t w t t t r

  

, .    

       
        

.r

(4.6) 

From the uniqueness of the solution of problems (2.1), 
(4.5) and (4.6) it follows that  

      , , andu v w t            

Consequently,  ,U t   can be written as  

       1 2

,

, , ,

, .V H

U t U t U t

C t r

,     

 

 

   
 

where       1 , ;t tU t v v ,     
      , ;t tw w


,

 and 

2U t         are the solutions of (4.5) 
and (4.6) respectively. 

First, thanks to (4.4), but with , it 
follows that  

0g f h  

   
 

2 2

2
1

; , ; ,

e , ,

V V
t tC C

m r t

w w

c d t r D

   

  

  

    .

t

   (4.7) 

Furthermore, for  and 0 0,t t  Ds T  r ,  

    0 0; , ; ,w t t s w t t s t t

with 0 Ds t t s T r     . Thus, Equation (4.7) implies 
in particular  

     02 2
0 1 1

0 0

; , e e

, , , .

m r t s t m r s

D

w t t s c d c d

t t t s T D




     

    
,
 

Then we can obtain that  

   
,

2 2
2 1, e , ,

V H

m r s

C
U t t s c d t s r D       , ,  

whence,  

 
,

2

2lim , 0.supsup
V HCs t D

U t t s



  

 


 

Next, fix 0 , ,Dt s T D    and denote  

   
   

0

0 0

; , ,

; , ,

u t u t t s

v t v t t s t t s r





 

,    
 

    0, ,t .F t f h t u g t t s      

Then, for ,  0t t

 
1

2
1 0 1,

h t

h

F t f g L u

f g L K 


  

   
        (4.8) 

and for , we have  0t t s 

 

 
1

1 22 2 22
1 0 0

1

2
1 1 0

ˆ

ˆ .

h t

h

h

F t f g L u

f g L d

K L d

  

 





  

   

 

       (4.9) 

Then, we deduce from the assumption on  that h

     , , 1 ,t tF t h t u u g u       and 

     51 1
H H

t tC C
F t K u u C u      . Arguing as we  

did in order to obtain (4.8) and (4.9), we have  

   
1

2
1 0 0 5 0 2 01 1 , ,F t K C K t t   
 

        
 

  

(4.10) 

and  

      

   

1
1 2 1 22 2 2 2 2 22

0 0 1 0 0

1 22 2 2
5 0 0 3 0

ˆ ˆ1 1

ˆ , .

F t K d d

C d K d t t s

    

 

 
       

 

     

 

(4.11) 

Let us denote 

         
2

2

2
y t v t v t Av t F t

     and make use  

.       
of the estimates in Theorem 4.2. On the one hand, for all 

,  0t t s 
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3
2 2

21 3
222

1 1 0 3

d 4

d 2 8

4
ˆ .

8h

y t y t F t F t v t
t

K L d K d v t

 


  




   

 
     

 

2

 

but, as (4.4) and (4.7) ensure  

     2 2 2 2 2 2
0 0 1ˆ2 2 2 2 2v t u t w t d c d      2 .  

if we denote by  

 

   

21

2
4 1 1 0

3
2 2 2 2 2

3 0 0

ˆ

4
ˆ .

4

hK d K L d

1K d d

 

  


 
   
 

    c d

 

then, in particular, 

     4 0, ,
2

y t y t K d t t s t
      0 . 

Noticing that     2

0 0y t s F t s   , the Gronwall 
lemma leads us to  

     
21

2
0 4 1 1 0 5

2
ˆ .hy t K d K L d K d 


 

     
 

 

On the other hand, if , we deduce that  0t t

       2 2 2 2 2
0 12 2 2 2 em r sv t u t w t c d     ,  

and, from (4.8) and (4.10),  

     

 

3
2

1 2

3 3
2 2

1 2 0 1

2
6 7 0

4

2

4
e

4 4

e , .

m r s

ms

y t y t K K v t

K K c d

K K d t t

 


  






    

   

   

8

 

Once again, the Gronwall lemma implies that  

     

   

0

0

22
0 6 7

22
5 6 7

2 2
e e

2 2
e e

t t ms

t t ms

y t y t K K d

0, .K d K K d





 

 

 

 

  

   t t

 

Then, there exists D DT T   such that, if Ds T  ,  

   
 02

5 6 0

3
e , ,

t t
y t K d K t t t






    0 .



 

Recalling that    0; ,y t y t t s   , if we fix 0 , 
take 

t t
Ds T   and denote 0 Ds t t  T   we have, 

provided  is large enough, that   0tt 

  

In conclusion, there exists  such that for all 0DT  
t , and all D Ds T T   ,  

  6

4
; , ,y t t s K D 


    .  

Denoting D̂ D DT T T r   
ˆ

, we have for all 
, , DD t s T     

   

   

2

2

6

; , ; ,
2

4
; , ; ,

v t t s v t t s

,Av t t s F t t s K

 

 


   

    

 

where 

       ; , , ; , ; ,tF t t s f h t u t t s g u t t s        . 

But as for all ,D t    and Ds T , we get 
  2 2

0; ,v t t s     and 
  2 1 2

1; , 2 2F t t s K f C
22 2 2 2 hL7 5 0 0       , and, 

consequently, for all ,D t    and Ds T ,  

   2 2

2
2 2

6 6 0

; , ; ,

4 8
2 ,

2

v t t s Av t t s

7K K K

 

 
 

   

   
 

which shows that  

 
 ,

2
2 2 2

1 6 6 0

4 8
; , 2

2D A V
t C

v t s K K K
  

 
       2

7 ,  

for all ,D t    and D̂s T . This means that the all  

 
 0,

,

1
1D A VCB B   is the bounded set in  ,D A VC   

which , in addition, is uniformly absorbing for the family 
of operators  ,U   . As  is the bounded set in 1B

 ,D A VC , then there exists  such that  1B
T  r

  11 , , ,1 1 ,
B

U t t s B B t s T      

and, therefore, the bounded set  
2

,D A VB C  given  

 2 1 
1

1 , ,
B

t s T

B U t t s B
 
  1B  

is uniformly pullback absorbing for  in .  1 ,U   ,V HC
By Ascoli-Arzelà theorem, we can prove that 2B  is  

compact, so   2

t
B t B





 is a family of compact  

subsets in , which is also uniformly pullback 
attracting for 

,V HC
 ,U   , and the proof has been completed.  

REFERENCES 

 
 

0 0

6

; , ; ,

4
; , .

D Dy t t T y t t t t T

y t t s K

 




     

  
 

[1] J. C. Robinson, “Infinite Dimensional Dynamical Sys- 
tems,” Cambridge University Press, London, 2001.  
http://dx.doi.org/10.1007/978-94-010-0732-0 

[2] R. Temam, “Infinite Dimensional Dynamical Systems in 
Mechanics and Physics,” Springer-Verlag, New York, 
1988. http://dx.doi.org/10.1007/978-1-4684-0313-8 

Open Access                                                                                         IJMNTA 

http://dx.doi.org/10.1007/978-94-010-0732-0
http://dx.doi.org/10.1007/978-1-4684-0313-8


G. G. LIN  ET  AL. 

Open Access                                                                                         IJMNTA 

218 

[3] C. K. Zhong, M. H. Yang and C. Y. Sun, “The Existence 
of Global Attractors for the Norm-to-Weak Continuous 
Semigroup,” Journal of Differential Equations, Vol. 223, 
No. 2, 2006, pp. 367-399.  

[4] Y. Q. Xie and C. k. Zhong, “The Existence of Global At- 
tractor for a Class of Nonlinear Evolution Equation,” 
Journal of Applied Analysis, Vol. 336, No. 1, 2007, pp. 
54-69. http://dx.doi.org/10.1016/j.jmaa.2006.03.086 

[5] T. Caraballo, P. E. Kloeden and J. Real, “Pullback and 
Forward Attractor for a Damped Wave Equation with 
Delays,” Stochastics and Dynamics, Vol. 4, No. 3, 2004, 
pp. 405-423.  
http://dx.doi.org/10.1142/S0219493704001139 

[6] V. Pata and M. Squassina, “On the Strongly Damped 
Wave Equation,” Communications in Mathematical Phy- 
sics, Vol. 253, No. 3, 2005, pp. 511-533.  
http://dx.doi.org/10.1007/s00220-004-1233-1 

[7] T. Caraballo and J. A. Langa, “On the Upper Semiconti- 
nuity of Cocycle Attractors for Non-Autonomous and 
Random Dynamical Systems,” Dynamics of Continuous 
Discrete and Impulsive Systems, Vol. 10, 2003, pp. 491- 
513.   

[8] T. Caraballo, P. Marin-Rubio and J. Valero, “Autono- 
mous and Non-Autonomous Attractors for Differential 
Equations with Delays,” Journal of Differential Equa- 
tions, Vol. 208, No. 1, 2005, pp. 9-41.   

[9] T. Caraballo and J. Real, “Attractors for 2D-Navier- 
Stokes Models with Delays,” Journal of Differential Equa- 
tions, Vol. 205, No. 2, 2004, pp. 270-296.  
http://dx.doi.org/10.1016/j.jde.2004.04.012 

[10] D. Cheban, P. E. Kloeden and B. Schmalfuss, “The Rela- 
tionship between Pullback, Forwards and Global Attrac- 
tors of Nonautonomous Dynamical Systems,” Nonlinear 
Dynamics and Systems Theory, Vol. 2, 2002, pp. 9-28.  

[11] C. Y. Sun, S. h. Wang and C. K. Zhong, “Global Attrac- 
tors for a Nonlassical Diffusion Equation,” Acta Mathe- 
matica Sinica, English Series, Vol. 26B, No. 3, 2005, pp. 
1-8.  

[12] J. Hale, “Asymptotic Behavior of Dissipative Systems,” 

American Mathematical Society, Providence, 1988.  

[13] M. J. Garrido-Atienza and J. Real, “Existence and Uni- 
queness of Solutions for Delay Evolution Equations of 
Second Order in Time,” Journal of Mathematical Analy-
sis and Applications, Vol. 283, No. 2, 2003, pp. 582-609.   

[14] M. H. Yang, J. Q. Duan and P. Kloeden, “Asymptotic 
Behavior of Solutions for Random Wave Equations with 
Nonliear Damping and White Noise,” Nonlinear Analysis: 
Real World Applications, Vol. 12, No. 1, 2011, pp. 464- 
478. http://dx.doi.org/10.1016/j.nonrwa.2010.06.032 

[15] T. Caraballo, G. Lukaszewicz and J. Real, “Pullback At- 
tractors for Non-Autonomous 2D-Navier-Stokes Equa- 
tions in Some Unbounded Domains,” Comptes Rendus de 
l’Académie des Sciences, Vol. 342, No. 4, 2006, pp. 263- 
268.   

[16] Y. J. Wang, C. K. Zhong and S. F. Zhou, “Pullback At- 
tractors for Non-Autonomous Dynamical Systems,” Dis- 
crete and Continuous Dynamical Systems, Vol. 16, 2006, 
pp. 587-614.   

[17] Z. J. Yang, “Global Attractor for a Nonlinear Wave Equa- 
tion Arising in Elastic Waveguide Model,” Nonlinear 
Analysis: Theory, Methods & Applications, Vol. 70, No. 5, 
2009, pp. 2132-2142.  
http://dx.doi.org/10.1016/j.na.2008.02.114 

[18] Z. J. Yan and X. Li, “Finite-Dimensional Attractors for 
the Kirchhoff Equation with a Strong Dissipation,” Jour- 
nal of Mathematical Analysis and Applications, Vol. 375, 
No. 2, 2011, pp. 579-593.  
http://dx.doi.org/10.1016/j.jmaa.2010.09.051 

[19] Y. Q. Xie and C. K. Zhong, “Asymptotic Behavior of a 
Class of Nonlinear Evolution Equations,” Nonlinear Analy- 
sis: Theory, Methods & Applications, Vol. 71, No. 11, 
2009, pp. 5095-5105.  
http://dx.doi.org/10.1016/j.na.2009.03.086 

[20] S. B. Wang and G. W. Chen, “Cauchy Problem of the 
Generalized Double Dispersion Equation,” Nonlinear 
Analysis: Theory, Methods & Applications, Vol. 64, No. 1, 
2006, pp. 159-173.  
http://dx.doi.org/10.1016/j.na.2005.06.017 

 
 

http://dx.doi.org/10.1016/j.jmaa.2006.03.086
http://dx.doi.org/10.1142/S0219493704001139
http://dx.doi.org/10.1007/s00220-004-1233-1
http://dx.doi.org/10.1016/j.jde.2004.04.012
http://dx.doi.org/10.1016/j.nonrwa.2010.06.032
http://dx.doi.org/10.1016/j.na.2008.02.114
http://dx.doi.org/10.1016/j.jmaa.2010.09.051
http://dx.doi.org/10.1016/j.na.2009.03.086
http://dx.doi.org/10.1016/j.na.2005.06.017

