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ABSTRACT 

Homotopy analysis method (HAM) is employed to investigate amperometric biosensor at mixed enzyme kinetics and 
diffusion limitation. Mathematical modeling of the problem is developed utilizing non-Michaelis-Menten kinetics of the 
enzymatic reaction. Different results of the problem are obtained for different values of the dimensionless parameters. 
Accuracy of the obtained results is verified by comparing them with the available actual and simulated ones. It is con- 
cluded that the obtained solution can be considered as a promising one to investigate different aspects of the phenom- 
ena. 
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Kinetics 

1. Introduction 

Biosensors play important roles as components of the 
transduction mechanisms [1] and can be employed as 
measurement devices to gauge biologically relevant in- 
formation such as neural interfaces and oxygen elec- 
trodes [2]. Furthermore, they can be used as transducers 
which translate the biomolecular responses into electrical 
signals [3]. Biosensors produce signals harmonized to the 
concentrations of the measured analytes. These devices 
are used in so many applications like detection of patho- 
gens [4], toxic metabolites (such as mycotoxins [5]), de- 
tection of pesticides and river water contaminants such as 
heavy metal ions [6], etc. The mentioned examples show 
the importance of biosensors and their applications in 
different branches of Science and Engineering which 
reveals the requirement of analysis of these highly de- 
manded instruments. One of the popular and perspective 
trends of biosensorics is amperometric biosensor [7]. 
Since they were first introduced by Clark and Lyons in 
1962 [8], several studies have investigated different as- 
pects of amperometric biosensors. In principle, they 
measure the changes of the current of indicator electrode 

by direct electrochemical oxidation or reduction of the 
products of the biochemical reaction [9-11]. They are 
widely used today because of the reliability and high 
sensitivity for environment, clinical and industrial appli- 
cations. 

Design of biosensors is based on understanding the 
kinetic characteristics of these devices. Generally, meas- 
uring the concentration of substrate inside enzyme mem- 
branes is not possible. Hence, various mathematical 
models of amperometric biosensors have been presented 
and used as an important tool in order to obtain analytical 
characteristics of actual biosensors [12,13], such as in- 
vestigative monolayer membrane model used to study the 
biochemical treatment of biosensors [14,15]. Their ma- 
thematical models are based on reaction-diffusion equa- 
tions including non-linear term that relate to non-Micha- 
elis-Mentenkinetics of the enzymatic reaction [16,17]. 
Hence, high accurate analytical and numerical methods 
should be employed to investigate this important nonlin- 
ear chemical equation.  

Most scientific problems in engineering are inherently 
nonlinear. Except for a few of them, the majority of 
nonlinear problems does not have analytical solutions.  
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Therefore, the constitutive laws of these problems should 
be solved using other schemes such as numerical or per- 
turbation methods. In the numerical method, stability and 
convergence of the solution should be considered so as to 
avoid divergence or inappropriate results [18]. In the 
perturbation method, the small parameter is inserted in 
the equation; thus, finding the small parameter and ex- 
erting it into the equation is one of the deficiencies of this 
method [19]. One of the semi-exact methods for solving 
nonlinear equation which does not need small/large pa- 
rameters is Homotopy Analysis Method (HAM), first 
proposed by Liao [20,21]. Homotopy Analysis Method is 
now widely used to solve different types of nonlinear 
problems. Various papers on nonlinear physical and en- 
gineering problems [22,23] have proved the validity of 
HAM. Moreover, recently the application of HAM on 
medical and chemistry problems has gotten so much at- 
tention among researchers. Counting reaction network 
equilibria [24], reaction-diffusion Brusselator model [25], 
predicting the lowest energy conformations of proteins 
[26] and many other examples can be considered as ap- 
plications of HAM in Chemistry and Medicine. Several 
auxiliary parameters and functions available in the pro- 
cedure of HAM need to be chosen so properly for the 
convergence of the solution. Through practice of auxil- 
iary parameter h, convergence region of the solution is 
readily adjustable to a wide range of variables.  

This paper presents the analytical solution for an am- 
perometric biosensor at mixed enzyme kinetics and dif- 
fusion limitation by utilizing HAM as a strong method. 
Non-Michaelis-Menten kinetics of the enzymatic reac- 
tion is used to obtain the constitutive equation of the 
problem. Different non-dimensional parameters are de- 
fined so as to non-dimensionalize the equation. The ob- 
tained non-dimensional equation is used to procure mth- 
order deformation equation as an important step of the 
procedure of the solution. The h-curves are obtained for 
several cases illustrated in the paper to clarify the con- 
vergence region of the solution. In addition, results are 
obtained to investigate the effects of the variations of 
each dimensionless parameter of the procured equation. 
Finally, some of the results are compared with the actual 
and simulated results available in the literature [27] to 
verify the accuracy of the method. 

2. Mathematical Modeling 

Spatial dependency of enzyme kinetics on biochemical 
systems has recently attracted much attention by consid- 
ering the effect of diffusion in these processes [16,17]. 
The simplest scheme of non Michaelis-Menten kinetics 
may for instance be described by adding to the Micha- 
elis-Menten scheme (2.1) the relationship of the interact- 
tion of the enzyme substrate complex   with an- 

other substrate molecule 

ES

 S

ES

 (2.2) followed by the gen- 
eration of non-active complex  as  2ES

E P


E S  

S



2ES

            (2.1) 

ES  



              (2.2) 

The reaction is sometimes said to display Michaelis- 
Menten kinetics in which the relationship between the 
rate of an enzyme catalyzed reaction and the substrate 
concentration takes the form 


 

max

M

V S

K S
               (2.3)  



where   and maxV  are the so-called “initial reaction 
velocity” and maximum velocity respectively. 

In addition, MK  is known as Michaelis constant for 
. S MK  and maxV  are constants at a given temperature 

and a given enzyme concentration.  
The reactions exhibit non-Michaelis-Menten kinetics, 

in which the kinetic behavior does not obey the Equation 
(2.3). The velocity function   for the simple reaction 
process without competitive inhibition is given by Pao 
[28] and Baronas et al. [27], which is based on the non- 
Michaelis-Menten hypothesis, 

   
   

 
   

max0
2 2

c

M i M i

k E S V S

K S S K S K
  

  K S



   (2.4) 

where the constants max 0cV k , E MK  and iK  are 
Michaelis-Menten and inhibition constants respectively. 
The Equation (2.4) conforms to Equation (2.3) for large 
values of iK  with respect to MK . On the basis of 
Equation (2.4), the rate is maximized by increasing the 
concentration. It is then said to be inhibited by the sub- 
strate. In addition, the constant iK  (which has the di- 
mension of a concentration) is called the substrate inhibi- 
tion constant. For obtaining the rate of change of sub- 
strate concentration  t,S S   at time t  and position 
   throughout the domain, the following equation 
given by Pao [28] is used. 

   , S

S
D S t

t
 


   


          (2.5) 

S  is the substrate diffusion coefficient and D S  is 
the gradient operation. On the basis of non-Michaelis- 
Menten kinetics, Equation (2.5) becomes 

2

2 21S
M i M

S S S
D

t S K K K
 

 
  

K

S
      (2.6) 

in which 0c MK K E K . In this article, steady state 
condition is considered which results in changing Equa- 
tion (2.6) to the following equation 
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2
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       (2.7) 

Equation (2.7) is changed to the non-dimensional form 
(Equation (2.8)) [27] using the following non-dimen- 
sional parameters 

2
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i M

ks
(2.8) 

Equation (2.8) must be solved to satisfy the following 
boundary conditions which are based on the location of 
electrodes and diffusion layer in the boundaries of the 
membarne 

1      at    1

0   at    0

u x

u
x

x

 


 


             (2.9) 

3. HAM Solution 

In this section the solution procedure of this problem 
using HAM is discussed. The appropriate form of non- 
linear differential Equation (2.8) for the procedure of 
HAM is presented as follows: 

       
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    (3.1) 

where  is the node number,  is the nonlinear op- 
erator, and the function 

i N
 i q  is defined as 

   

   
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           (3.2) 

where  is the unknown field variable,  u x  0,1q  
is the embedding parameter, and  is the initial 
guess which is employed to meet the requirements of the 
boundary conditions. In this paper, the 

 0u x

 0u x 1  has 
been chosen which correctly satisfies all the boundary 
conditions stated in Equation (2.9). 

So through the generalizing concept of HAM the so- 
called zero-order deformation equation can be written as: 

         01 ,q L x q u x qhH x N x q       ,    (3.3) 

where  is the non-zero auxiliary parameter, 0h 
 H x  is the auxiliary function, and  is the auxiliary 

linear operator which is chosen here as 
L

    2

2

d

d

f x
f x

x
            (3.4) 

with the following property: 

 1 2 1 20  when  0C C C Cx x          (3.5) 

Expanding  ,x q  in Taylor series with respect to 
the embedding parameter q , one obtains 
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With due attention to the procedure of HAM [21], 
 mu x  should be chosen so as the following equation is 

satisfied 

 
0

d
1 0

d
m

m
X

u
u

X 

             (3.7) 

If the series  ,x q  converges at , then the se- 
ries solution is 

1q 
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             (3.8) 

where  mu x  could be obtained by the so-called high- 
order deformation equation. For obtaining the mth-order 
deformation equation, the following vector is defined as: 

      0 1, , ,n u x u x u x u n           (3.9) 

Differentiating both sides of the zero-order equation m 
times with respect to  and then setting , the so- 
called mth-order deformation equation can be obtained as 

q 0q 
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Therefore, the following relation is obtained 
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We are free to choose the auxiliary parameter , the 
auxiliary function 

h
 H x , the initial guess  x0 , and 

the auxiliary linear operator  so that the validity and 
flexibility of the HAM solution to control the conver- 
gence region is proven. Due to the rule of solution ex- 
pression [21] the auxiliary function is chosen as follows 

u
L

  1H x                 (3.14) 

According to the HAM, the valid region of the auxil- 
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iary parameter h for convergence of the solution series is 
the flat regions of h-curves. 

4. Results and Discussion 

To see the proper values of h, the h-curves are plotted for 
different values of dimensionless parameters  

,   and  K   in Figure 1 to obtain the valid results of 
the considered conditions. 
 

 

 

 

 

Figure 1. Variations of  u x
,  0β

 versus non-dimensional pa- 

ramete for (a) ; (b) ,  ; (c) 

; and (d) . 

x
,  

1.0 .1α 
10.0α

0.1 1.0α β 
1.0β10.0 0.1α β  ,   

The procedure of solving the non-dimensional equa- 
tion of enzyme reaction (Equation (2.8)) which is based 
on the non-Michaelis-Menten kinetics theory utilizing 
HAM is described in Section 3. It is mentioned that 
mth-order deformation equation should be employed to 
solve the problem. As the first step of the solution, the 
diagrams of variation of non-dimensional parameter 
 u x  versus auxiliary parameter h for different investi- 

gated cases are illustrated (Figure 1). Then, flat regions 
of h-curves are obtained employing these diagrams. 

On the basis of the chosen values of auxiliary parame- 
ter h in the flat regions of h-curves (Figure 1) the varia- 
tions of  u x  versus x  were examined (Figure 2) to 
clarify the dependency of these variations on different 
non-dimensional parameters defined in Equation (2.8). 
Figure 2 clearly demonstrates that the effect of variation 
of non-dimensional parameter K on the profiles of  u x  
is so important which causes large differences between 
values of  u x  for different values of K. Values of 
 u x  at different locations are presented in Table 1 and 

Table 2 for better clarifying the effects of K as well as 
other non-dimensional parameters  ,  . 
 
Table 1. Values of non-dimensional variable  u x

 1.0β
 at dif- 

ferent locations for ,  ,1.0 0.1, 0.1α β α   
K

 and for 

different values of non-dimensional parameter . 

x α = 1.0, β = 0.1 α = 0.1, β = 1.0 

 K = 0.1 K = 1.0 K = 2.0 K = 5.0 K = 0.1 K = 1.0 K = 2.0 K = 5.0

0 0.9764 0.7831 0.6095 0.3012 0.9762 0.7675 0.5697 0.2517

0.2 0.9773 0.7916 0.6264 0.3245 0.9771 0.7767 0.5862 0.2517

0.4 0.9802 0.8172 0.6695 0.3971 0.9800 0.8044 0.6362 0.3515

0.6 0.9849 0.8601 0.7458 0.5261 0.9848 0.8507 0.7209 0.4885

0.8 0.9915 0.9209 0.8551 0.7225 0.9914 0.9159 0.8417 0.7002

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 
Table 2. Values of non-dimensional variable  u x  at 

diferent locations for ,  10.0 0.1α β  ,  

and for different values of non-dimensional parameter . 

,  1α β 
K

10.0 .0

x α = 10.0, β = 0.1 α =10.0, β = 1.0 

 K = 0.1 K = 1.0 K = 2.0 K = 5.0 K = 0.1 K = 1.0 K = 2.0 K = 5.0

0 0.9955 0.9551 0.9105 0.7795 0.9958 0.9583 0.9167 0.7927

0.2 0.9957 0.9569 0.9141 0.7882 0.9960 0.9600 0.9200 0.8010

0.4 0.9962 0.9623 0.9248 0.8146 0.9965 0.9650 0.9300 0.8258

0.6 0.9971 0.9712 0.9427 0.8586 0.9973 0.9733 0.9467 0.8672

0.8 0.9984 0.9838 0.9678 0.9204 0.9985 0.9850 0.9700 0.9253

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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5. Conclusion Verification of the Solution 

In order to verify the accuracy of the obtained solution, 
results are compared with available simulation and exact 
solutions available in the literature [28] for the special 
case of 0, 0    (Table 3). It is shown that the 
values of the results of HAM and exact solution in the 
considered special case are identical to each other at the 
considered numerical precision. It should be noted that 
exact solutions are available only for this special case. 
The excellent agreements between HAM and exact solu- 
tions in Table 3 suggest that HAM can yield highly ac- 
curate solutions not only for the special cases but also for 
the general cases for which exact solution does not exist. 
Hence, the results presented in this paper can be utilized 
as promising data for investigating the behavior of the 
general enzyme reaction. 

Analytical solution of the amperometric biosensor at 
mixed enzyme kinetics and diffusion limitation is pre- 
sented utilizing HAM. Dimensionless equation of the 
problem is obtained using the mathematical modeling 
presented in the paper which is based on non-Micha- 
elis-Menten kinetics of the enzymatic reaction. Solution 
procedure of the non-dimensional equation of enzyme 
reaction is described and mth-order deformation equation 
is obtained on the basis of the non-dimensional enzyme 
reaction equation presented in this article. Several 
h-curves are presented to show the convergence region of 
the solution. Results of the solution are presented for 
different quantities of the dimensionless parameters used 
to non-dimensionalized the enzyme reaction equation. It 
is clarified that the most effective parameter in the reac-  

 

 

 

Figure 2. Variations of  u x  versus auxiliary parameter x for (a) ,  1.0 0.1α β  ; (b) ; (c) 

; and (d) . 

,  0.1 1.0α β 

,  10.0 0.1α β  ,  1.0β 10.0α
 
Table 3. Comparison of the results of the HAM with simulation and actual results of the problem at different locations and 
for different values of non-dimensional parameter  ,  0 0K α β  . 

 K = 0.1 K = 1.0 K = 5.0 

x Simulation HAM Exact Simulation HAM Actual Simulation HAM Actual 

0 0.9500 0.9520 0.9520 0.6500 0.6481 0.6481 0.2100 0.2113 0.2113 

0.25 0.9529 0.9550 0.9550 0.6666 0.6684 0.6684 0.2502 0.2452 0.2452 

0.50 0.9613 0.9639 0.9639 0.7293 0.7303 0.7303 0.3585 0.3578 0.3578 

0.75 0.9767 0.9789 0.9789 0.8366 0.8390 0.8390 0.5893 0.5851 0.5851 

1.0 0.9976 1.0000 1.0000 0.9940 1.0000 1.0000 0.9970 1.0000 1.0000 
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tion and local dependency of the dependent variable of 
the problem  u x  is K. Conclusively, some available 
results in the literature are used to prove the high accu- 
racy of the presented solution. 
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