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ABSTRACT 

In this paper, we apply alternating minimization method to sparse image reconstruction in compressed sensing. This 
approach can exactly reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. The 
convergence analysis of the fast method is also given. Some MR images are employed to test in the numerical experi-
ments, and the results demonstrate that our method is very efficient in MRI reconstruction. 
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1. Introduction 

Compressed Sensing has enormous potentials for scan 
time reducing significantly in magnetic resonance im-
age(MRI) research community. Compressed Sensing 
theory was put forward by Candes, Romberg and Tao 
[1], and D. Donoho [2] in 2006. They pointed out that 
sparse signals can be reconstructed from a very limited 
number of samples, provided that the measurements 
satisfy an incoherence property [3]. For MRI Com-
pressed Sensing, it is possible to reconstruct accurately 
MR images from under-sampled k-space data, i.e., 
the partial Fourier data by solving optimization prob-
lems. 

Suppose Nu R  is a sparse signal, and 
0

u   
denotes number of non-zeros in u. Let A be M N （K < 
M N ） measurement matrix such that Au b , where 
b is an observed data vector. Then to recover u from b is 
equivalent to solve 0L  problem: 

 0
min ,

u
u Au b              (1) 

However, problem (1) is provably NP hard  [4] and 
very difficult to solve from the viewpoint of numerical 
computation. Thus, it is rexalistic to solve 1L   problem: 

 1
min ,

u
u Au b              (2) 

which has also been known to yield sparse solutions un-
der some conditions (see [5,6] for explains). In the case 
of Compressed Sensing MRI, A is a partial Fourier ma-
trix, i.e., , M NA PF P R    is consisted of M N  

rows of the identity matrix, F is a discrete Fourier matrix. 
When b is contaminated with noise such as Gaussian 
noise of variance 2 , the relaxation form for problem (2) 
should be given by 

 2 2

1 2
min :

u
u Au b            (3) 

The total variation regularization has been first pro-
posed for image denoising by Rudin, Osher and Fatemi 
[7]. It is well known that TV regularizier can better re-
cover piecewise smooth signals with preserving sharp 
edges or boundaries. So TV regularizer is a sparsifying 
transform operator for piecewise smooth MR images 
such as brain images. When only TV sparsifying trans-
form is considered, the optimization problem in Com-
pressed Sensing MRI can be written as 

 2 2

2
min ,

TVu
u PFu b            (4) 

The unconstrained version of problem (4) is 

2

2
min

2TVu
u PFu b


  ,         (5) 

where μ is a positive parameter that determines the 
trade-off between the fidelity term and the sparsity term, 

2
. denotes the Euclidean norm. Model (5) was previ-

ously mentioned by He etal.[8] and Lustig et al. [9]. 
In this paper, we focus on the two dimensional MRI 

Compressed Sensing model (5). All two dimensional 
images are changed into one dimensional vectors in the 
context of paper. For square images, let 

2nu R  be a 
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n n  image. 
TV

u  in (5) is defined as 

    
1

2 2 2

1 , 2 ,, j k j kj kTV
u u u    . In the two dimen- 

sional image practical applications, we only consider the 
periodic boundary condition of the image. Therefore, the 
discrete gradient operators 1  and 2  of n n  im-
age can be defined by 

1, ,
1 ,

1, ,

j k j k
j k

k n k

u u if j n
u

u u if j n
  

    
        (6) 

, 1 ,
2 ,

,1 ,

j k j k
j k

j j n

u u if k n
u

u u if k n
      

        (7) 

    2 21 2, n nD D R   denote finite difference matrices 
corresponding to 1 ,j ku  and 2 ,j ku  respectively. Let 

      1 2 2,
T

i
i i

D u D u D u R   where    , 1, 2l

i
D u l   

are the  i jn k   th entry of  lD u , i is correspond-
ing to the (j,k)th pixel position of the image. The summa- 

tion 
2

1 2

n

ii
D u

  equals to the discrete total variation of u, 

i.e. 
TV

u Thus (5) is changed into 

2
2

22
1

min
2

n

i
u i

D u PFu b




           (8) 

Recently, Y. L. Wang et al. [10] have studied the total 
variation image restoration model: 

2

2
min

2TVu
u Bu f


               (9) 

i.e. 
2

2

22
1

min
2

n

i
u i

D u Bu f




  ,         (10) 

where 
2 2n nB R   represents a blurring operator. They 

proposed an alternating minimization method to solve (9). 
In this paper, we will apply this approach to the Com-
pressed Sensing MRI model (8). 

In model (8), 
2m nP R   is a selection matrix con-

sisting of 2m n  rows of the identity matrix, F is a 
two-dimensional discrete Fourier transform matrix. So 
PF serves as a sensing matrix. b is acquired (by coils in 
an MRI scanner) and sent to a computer, so b is an ob-
served data containing noise. We will employ quadratic 
penalty approach [11] to split the model (8) into two 
sub-minimization problems, and build the fast method to 
solve the two sub-problems. We will also analyze the 
convergence of the fast reconstruction method. This pa-
per is organized as follows. In section 2, basic algorithm 
and optimization is given. Section 3 presents the conver-
gence analysis of the fast reconstruction algorithm. 

In section 4, Shepp-Logan Phantom image and some 
real MR images are employed to do numerical experi-
ments to demonstrate the effectiveness of the fast recon-
struction method. 

2. Basic Algorithm and Optimization 

Firstly, we introduce some notations for the sake of con-
venience. For vectors 

2n
i R   and finite difference ma-

trices   2 2

, 1,2,i n nD R i   assume 

   1 2 1 2; ,
TT Tw       

and          1 2 1 2; ,
TT T

D D D D D   Let 

 
2

2 2
1 2( ) ;( ) , 1,2, ,i i i

n

w R i n

v R

   




 

By using quadratic penalty approach, we can change 
(8) into the following problem: 

2 2
2 2

22 2,, 1 1

min
2 2

n n

i i i
u w i i

w w D u PFu b
 

 

 
     

 
    (11) 

In (11), iw  is the approximation of iD u . It is well 
known that the solution of (11) converges to that of (8) as 
  . Therefore the solution of (11) for   large 
enough can better approximate to that of (8). If fix alter-
natively u and w, we can obtain the following two 
sub-problems: 

2 2
2

2
1 12

min
2

n n

i i i
w i i

w w D u


 

   ,        (12) 

2 2
2

2
1 2

min
2 2

n

i i
u i

w D u PFu b
 



   .    (13) 

Since w-subproblem (12) is separable with respect to 

iw , minimizing (12) is equivalent to solving 

2
2

2 2
min , 1, 2, ,

2i
i i iw

w i nw D u


       (14) 

Therefore, we can get its minimizer by two dimen-
sional shrinkage: 

  2, 1,2, ,i w iw s D u i n   ,        (15) 

where   1
max ,0 i

w i i
i

D u
s D u D u

D u
 

  
 

 in which 

0
0 0

0
   
 

 is assumed. 

For vectors 
2

, nx y R , define   2 22 2, : n n
wS x y R R  

by 

        21 2, , , ,
T

w w w w n
S x y s z s z s z  ,     (16) 

where   2, , 1,2, ,
T

i i iz x y i n    
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Rewrite (15) as the following: 

    1 2,ww s D u D u .             (17) 

For u-subproblem (13), the first-order optimality con-
dition is 

   
2 2

1 1

0
n n

TT T
i i i i

i i

D D u D w PF PFu b  
 

      (18) 

We note that 

 
2

(1) (1) (2) (2)

1

T Tn
T T
i i

i

D D u D D D D u D Du


  
2

1

n
T T
i i

i

D w D w


  

Thus 

 T T T T T TD D F P PF u D w F P b      .   (19) 

For l = 1, 2, suppose the Fourier transform of  lD  are 
 lD . Let 

         1 2 1 2; ,
TT T

D D D D D       

Apply the Fourier transform to both sides of (19), we 
can obtain 

T T T TD DFu P PFu D Fw P b        .     (20) 

For the periodic boundary condition for u, (1) (1) ,
T

D D  
(2) (2)T

D D  are all block circulant [12]. Therefore, TD D  
can be diagonalized by Fourier transform. It is easy to 
see that TP P  is diagonal. Thus T TD D P P    is also 
a diagonal matrix. Given w , we can obtain u by the two 
steps. The first step is to get Fu  by solving (20). The 
second step is to obtain u  by applying the inverse fou-
rier transform to Fu . For the sake of simplicity, let 

 
2

2 2

22
1

min
2 2

n

u i i
u i

s w w D u PFu b
 



    .   (21) 

For a fixed  , the alternating approximation algo-
rithm for solving (8) can be given as follows: 

Algorithm 1 Input b , P and parameters   > 0, μ 

> 0. Initialize  0u u  
While stopping criterion is not satisfied, Do 
Compute 

          
    

1 1 2 1, ,

, 1, 2, .

k k k
w

k k
u

w s D u D u

u s w k

 

  
 

End Do 
To solve the u-subproblem use only a FFT transform 

and a inverse FFT transform, and the solution of w - 
subproblem can be obtained by two dimensional shrink-

age, so this alternating algorithm is a fast approach. The 
stopping criterion will be given in the section numerical 
experiments. The convergence analysis of this algorithm 
will be discussed in detail in the next section. 

3. The Convergence Analysis and a 
Continuation Strategy 

In this section, we give the convergence analysis of the 
alternating algorithm for fixed   > 0. We give the defi-
nition of the firmly non-expansive operator before the 
presentation of non-expansiveness for two dimensional 
shrinkage. 

Definition 3.1. An operator 2 2:s R R  is firmly non- 
expansive if it satisfies the following condition: 

         2 22

22 2
s x s y x y Id s x Id s y        

where Id is identity operator. It is easy to show that a 
firmly non-expansive operator 2 2:s R R  is non-ex- 
pansive, i.e., for any    2

22
, ,x y R s x s y x y     

Lemma 3.1. If   2 2:P R R   is the projection onto 

2 1
x R x


 

    
 

 , and for 2x R  the two dimen- 

sional shrinkage operator 2 2:ws R R  is defined as 

2
2

1
max ,0w

x
s x

x
 

 
 

  where
0

0 0
0

   
 

 is fol-

lowed, then    ws x x P x  . 

Lemma 3.2. For all 2,x y R , it holds that 

       2 22

22 2w ws x s y x y P x P y      Further-

more, if     22w ws x s y x y   ,.then ，

  2 22 2, : n n
wS x y R R  x y   

The proofs of these two lemmas are shown in [10]. 
By Lemma 3.1 and Lemma 3.2, we can get the fol-

lowing theorem: 
Theorem 3.1. For 2x R , if the two dimensional 

shrinkage operator 2 2:ws R R  is given by 

2
2

1
max ,0w

x
s x

x
 

 
 

 then  ws  is non-expansive, 

i.e., for any 2,x y R , 

    22w ws x s y x y   .           (22) 

Theorem 3.2. For vectors 2

, nx y R , if 

  2 22 2, : n n
wS x y R R  is defined by 

        21 2, , , ,
T

w w w w n
S x y s z s z s z   

where   2, , 1,2, ,
T

i i iz x y i n   and     1 2;D D D   

    1 2,
T T T

D D , then 
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           1 2 1 2

22
, ,w wS D x D x S D y D y D x y   (23) 

Proof. By theorem 3.1 and the definition of wS , for 
any 

2

, nx y R , we obtain 

         
      

      
             

2

2

2
1 2 1 2

2

1 2

1

2
1 2

2

2

1 2 1 2

1 2

2

2

, ,

,

,

, ,

w w

n T

w
i ii

T

w
i i

n T T

i i i ii

S D x D x S D y D y

s D x D x

s D y D y

D x D x D y D y

Dx Dy







   
 

   
 

 

 





 

since          1 2 1 2; ,
T T T

D D D D D   
This completes the proof. 
Let T T TM D D F P PF   , since 0, 0   , M 

is nonsingular. According to (19), we have 

    
  

         
        

1

1 1 2 11

1 1 2 11 1

,

,

k k
u

kT T T

k kT T T
w

k kT T T
w

u S w

M D w F P b

M D S D u D u F P b

M D S D u D u M F P b

 

 

 



 

  



 

 

 

 

Assume 

           1 1 1 2 11

1

,k k kT
w

T T

u M D S D u D u

M F P b





  



 


,     (24) 

Then 

    1k ku u                 (25) 

Next we show that the operator T is non-expansive. 
Theorem 3.3. For μ large enough in (8), the operator 

T in (24) is non-expansive, i.e., for 
2

, nx y R , it holds 
that 

    22
T x T y x y    

Proof. 

   
          
          

2

1 2 1 21

2

1 2 1 21

2

, ,

, ,

T
w w

T
w w

T x T y

M D S D x D x S D y D y

M D S D x D x S D y D y











 

 

. 

Using (23) in Theorem 3.2, we have 

          
 

1 2 1 21

2

1

2

, ,T
w w

T

M D S D x D x S D y D y

M D D x y







 
 

Hence 

     

 

1

2 2

1

2

1

2

T

T

T

T x T y M D D x y

M D D x y

D D M x y













  

 

 

 

where   is matrix-norm. 

Since T T TM D D F P PF   , if μ is large enough 

such that   1 1TD D M   ，then    
2

T x T y  

2
x y   

This completes the non-expansiveness of the operator 
T (·). 

Theorem 3.4. For any initial value   20 nu  , as-
sume   ku  be generated by (25), then T is asymptoti-
cally regular, i.e., 

         1 0 01

2 2
lim lim 0k k k k

k k
u u T u T u 

 
     

Proof. Since 

          1 1 2 1,k k k
ww S D u D u   

by (19), we have 

   

        
1

1 2,

kT T T

k kT T T
w

D D F P PF u

D S D u D u F P b

 

 



 
    (26) 

   

        1 1 2 1,

kT T T

k kT T T
w

D D F P PF u

D S D u D u F P b

 

  



 
.   (27) 

(26) minus (27) is 

      
                  

1

1 2 1 1 2 1, ,

k kT T T

k k k kT
w w

D D F P PF u u

D S D u D u S D u D u

 





 

 

 
 

That is 

   

        
        

1

1 21

1 1 2 1

,

,

k k

k kT
w

k k
w

u u
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Using non-expansiveness of wS , we obtain 

        1 11

2 2

k k k kTu u M D D u u     

That is 

       1 1

2 2

k k k ku u u u     

where 1 TM D D   
When μ is large enough such that 1  , then we have 
       1 1 0

2 2

k k ku u u u     
So 

   1

2
lim 0k k

k
u u


   

This completes the proof. 
We note that the objective function in (11) is convex, 

bounded below, and coercive, thus (11) has at least one 
minimizer  ,u w  , and must satisfy 

 uu S w   

    1 2,ww S D u D u    

So u  is a fixed point of T. 
According to the Opial theorem [13], the squence 
  ku  converges to a fixed point of T. 
The algorithm 1 given in the section 2 can be signifi-

cantly accelerated by employing a continuation scheme 
introduced by Y. Wang [10]. That means penalty pa-
rameters   vary with k, starting from initial small val-
ues and increase them gradually. In the implementation 
of the algorithm, firstly for small fixed   apply the 
algorithm to solve (11) up to the stopping criterion. Next 
the obtained solution is used as new starting point of ap-
plying the algorithm to (11) for the next  . Go on like 
this until the the given max  is obtained. Such a con-
tinuation scheme is also called path-following technique 
which is widely used in the penalty methods [14-17]. 
This accelerating convergence result is also verified by 
our numerical experiments. Now we present the fast re-
construction method (FRM) for MR images with TV 
sparsity, which will be be used in the numerical experi-
ments. 

Algorithm 2 Input b, P, μ > 0, 0 0   and 

max 0  . Initialize  0u u  
While max  , Do 
1) For fixed  , run Algorithm 1 until the stopping 

criterion is satisfied. 
2) Update 2   . 
End Do 

4. Numerical Experiments 

In this section, we present the performance of fast recon-
struction method(FRM) for MR images with TV sparsity. 

We compare our method with Two-step iterative shrink-
age/ thresholding algorithm(TwIST) [18], which can be 
used to solve (8). The general model solved by TwIST is 

 2

2

1
min

2u
Au b u   ,        (28) 

where   is a regularization function such that the solu-
tion of the denoising problem 

   2

2

1
min

2u
v v u u      ,      (29) 

is known. If set  
2

1 2

1
, ,

n

ii
u D u A PF


    , then 

(28) is identical to (8). That is the reason that we choose 
TwIST method to compare with our method. 

Here we give the iteration framework of TwIST to 
solve (28) in brief. TwIST is a two-step version of itera-
tive shrinkage/thresholding(IST) [19] algorithm. The 
iteration formula of TwIST is as follows: 

    2

2

1
min

2k k
u

v u v u      ,       (30) 

     1 11k k k ku u u v          ,   (31) 

where , 0     T
k k kv u A b Au   , In the latest 

software, TwIST_v1,  and   are set as 
2ˆ ˆ 1     ,               (32) 

 1

ˆˆ 2
m

      .           (33) 

In which, the detail explain of parameters 1 , m and 
̂  can be seen in [18]. In TwIST_ v1, denoising prob-
lem (30) is solved iteratively by Chambolle’s algorithm 
[20]. Signal to noise ratio (SNR) and relative error 
(ReErr) are used to measure the quality of the recon-
structed images. The definitions of SNR and ReErr are 
given as follows: 

0 2

0 2

10log10
u

SNR
u u

 
    

,        (34) 

2

0 2
2

0 2

Re
u u

Err
u


 ,          (35) 

where u  and 0u  are the reconstructed image and 
original image, respectively. All experiments were done 
in MATLAB on a laptop with Intel Core Duo P8400 
processor and 2 GB of memory. 

The 256 × 256 Shepp-Logan phantom image is sam-
pled with 22 views in frequency space, for which there 
are 6136 Fourier coefficients measured, i.e., sample ratio 
is 9.36%. Figure 1 shows 22 radial lines in frequency 
space. 
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Figure 1. Sampling domain with 22 views in frequency space. 
 

In the following tests, we assume the mean value and 
standard deviation for the additive Gaussian noise are 0 
and 0.01, respectively. When using FRMto do numerical 
experiments, we initialize 52   and final max  equals 
to 102 . Let μ = 1000, and set initial image  0u  to zero. 
The stopping criterion is the relative difference between 
the successive iterate of the reconstructed image satisfy 
the following: 

   

 

1

42

2

10

k k

k

u u

u






          (36) 

According to the above mentioned parameters and the 
stopping criterion, we use our algorithm to do Phantom 
image reconstruction experiment. Figure 2(a) is Phepp- 
Logan phantom original image. The reconstructed image 
is showed in Figure 2(b). The SNR, ReErr and CPU 
time(seconds) are 31.3687 dB, 0.0270 and 19.4375, re-
spectively. 

Now we apply TwIST method to do Phantom image 
reconstruction experiment. We choose the monotonic 
variant of TwIST in TwIST_v1, which stops when the 
relative change in the objective function falls below Tol-
erance=1e-4. Parameters  and   are determined by 
using (32) and (33). The parameter 1  is equal to 1e-3 
that is recommended by the TwIST_v1 documentation. 
Set   = 1e-3, which is corresponding to μ = 1000. 

If we use TwIST to do the reconstruction test for the 
Logan Phantom image with same sampling ratios. The 
result is presented in Figure 2(c). Its SNR, ReErr and 
CPU time(seconds) are 29.0010 dB, 0.0355 and 55.5938, 
respectively. From all the two reconstructed images, it is 
clear that our method have better qualities than TwIST. 
In addition, from the values of SNR, ReErr and CPU 

time for restructed image, our method increases 11 the 
SNR by 2.3677 dB and reduce the ReErr and CPU time 
0.0085 and 35.1563 seconds more than TwIST. 

When we choose some views 44, 66, 88, the sampling 
ratios for Phantom image are 18.76%, 26.85%, 34.97%. 
The reconstructed results are showed in Figure 3 and 
Figuure 4 by the two methods. 

The following table presents the values of SNR, ReErr 
and CPU time of reconstructions under different views 
by FRM and TwIST. 

From Table 1, we can see that the SNR obtained using 
FRM is higher than that obtained using TwIST under the 
same sampling ratios or views. Figure 5(a), (b) and (c) 
give SNRs, the relative errors and CPU time, respec-
tively, of reconstructed images by FRM (red curves) and 
TwIST (green curves) from the observed data at a se-
quence of different sampling ratios. 

Now we look three different 256 × 256 MR brain im-
ages, which are shown in Figure 6 (a), (b) and (c), re-
spectively. 

We choose 66 views sampling for the three MR im-
ages, in which the sampling ratio is equal to 26.85%. 
 
 

 
(a)                  (b)                  (c) 

Figure 2. (a) Original image. (b) Reconstruction by FRM. (c) 
Reconstruction by TwIST. 

 
 

 
(a)                  (b)                  (c) 

Figure 3. Reconstruction by FRM (a) 44 views. (b) 66 views. 
(c) 88 views. 
 

 

 

(a)                  (b)                  (c) 

Figure 4. Reconstruction by TwIST (a) 44 views. (b) 66 views. 
(c) 88 views. 
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Table 1. SNR, ReErr, CPU of reconstructions under differ-
ent views or sampling ratios by two methods. 

Views/Samp.ratio Method SNR ReErr CPU 

FRM 40.6877 0.0092 7.1875 
44/18.76% 

TwIST 30.7696 0.0289 26.4219

FRM 44.8714 0.0057 4.9063 
66/26.85% 

TwIST 30.8412 0.0287 20.2031

FRM 47.8810 0.0040 3.6719 
88/34.97% 

TwIST 30.8412 0.0286 17.7969

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) SNRs. (b) Relative Errors. (c) CPU time. 

When use FRM and TwIST to do reconstruction ex-
periments for the three MR images, all parameters in the 
two methods are still same as the above mentioned. The 
results reconstructed by FRM and TwIST are presented 
in Figure 7. and Figure 8., respectively. 

The SNRs, the relative errors and CPU time of the re-
constructed images by FRM and TwIST are given in the 
Table 2. 

From the quality of reconstructed images and the val-
ues of SNR, ReErr and CPU time, we can see that FRM 
method is better than TwIST method. 
 

 

 
(a)                 (b)                   (c) 

Figure 6. Original image. (a) Brain 1. (b) Brain 2. (c) Brain 3. 
 

 

 
(a)                 (b)                   (c) 

Figure 7. Reconstructions by FRM (a) Brain 1. (b) Brain 2. 
(c) Brain 3. 
 
 

 
(a)                (b)                (c) 

Figure 8. Reconstructions by TwIST (a) Brain 1. (b) Brain 2. 
(c) Brain 3. 
 
Table 2. SNR, ReErr, CPU time and sampling ratios for 
reconstructed results by FMR and TwIST. 

Image Method SNR ReErr CPU Samp.ratio

FRM 26.1288 0.0494 6.9063 26.85% Brain

1 TwIST 24.7365 0.0580 20.8438 26.85% 

FRM 21.9353 0.0800 9.1719 26.85% Brain

2 TwIST 21.1494 0.0876 20.9375 26.85% 

FRM 27.6916 0.0412 6.4531 26.85% Brain

3 TwIST 26.1599 0.0492 20.5938 26.85% 
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5. Conclusion 

We have developed a fast reconstruction method for 
compressed sensing MRI that is called FRM. The con-
vergence of the reconstruction method has been analyzed. 
The algorithm has been accelerated by continuation on 
penalty parameters. FRM is compared with TwIST, a 
state-of-the-art method. We use the two methods to re-
construct Phantom image and some real MR images from 
a partial of observed data. The results of numerical ex-
periments on the MR images demonstrate that FRM can 
achieve much higher performance in terms of SNRs, the 
relative errors and CPU time than TwIST. We believe 
that our method can be applied in the area of rapid MR 
imaging. 
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