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ABSTRACT 
The matching of local descriptors represents at this moment a key tool in computer vision, with a wide variety of me-
thods designed for tasks such as image classification, object recognition and tracking, image stitching, or data mining 
relying on it. Local feature description techniques are usually developed so as to provide invariance to photometric var-
iations specific to the acquisition of natural images, but are nonetheless used in association with biomedical imaging as 
well. It has been previously shown that the matching of gradient based descriptors is affected by image modifications 
specific to Confocal Scanning Laser Microscopy (CSLM). In this paper we extend our previous work in this direction 
and show how specific acquisition or post-processing methods alleviate or accentuate this problem. 
 
Keywords: Local Features; Local Descriptors; Feature Matching; SIFT; CSLM 

1. Introduction 
The detection and description of affine-invariant regions 
have been regarded as high interest topics during the past 
decade. Image matching using local invariant features 
represents a key method used in many computer vision 
tasks such as image retrieval [1], recognition [2,3], wide 
baseline matching [4], building panoramas [5], micro- 
scopy image stitching [6], image based localization [7,8] 
or medical image classification [9,10]. In these applica- 
tions, local invariant features are detected independently 
in each image and then the features of one image are 
matched against the features of other images by direct or 
indirect comparisons of their respective feature descrip- 
tors. The matched features can subsequently be used to 
indicate presence of a particular object, to vote for a par- 
ticular image, to establish correspondences for epipolar 
geometry estimation, or to classify an image as belonging 
to a specific class. For all the above tasks, the core of the 
application is based on interest point correspondences 
between individual image pairs or between an image and 
a class of images. Among various methods reported in 
the literature, the Scale-Invariant Feature Transform 
(SIFT) [11] became one of the most preferred choices for 
local feature detection/description because of its high 
accuracy, relatively low computation time and the avail- 
ability of open-source implementations. 

Confocal scanning laser microscopy (CSLM) re- 
presents an essential imaging tool for many research 
fields. It provides the possibility to acquire in-focus im- 
ages from selected depths (optical sections) from both 
living and fixed specimens in a non-invasive manner. 
The optical sectioning capability is given by the presence 
of a pinhole aperture which acts as a spatial filter at the 
conjugate image plane, rejecting out of focus light [12]. 
The dimension of the pinhole aperture is responsible for 
the thickness of the imaged optical section. A stack of 
optical sections, imaging 2D confocal planes collected at 
different volume depths can be used to create 3D recon- 
structions of the imaged specimen. 

In CSLM the illumination light is scanned onto the 
specimen point by point by a mirror on galvano-motor- 
driven scanner and the light that is emitted from the spe- 
cimen is likewise collected and de-scanned. The in-focus 
light that passes the pinhole reaches a photomultiplier 
tube (PMT), which detects light and converts photon hits 
into an analogue electron flow. Raising gain (voltage) on 
the PMT can amplify a weak signal but also amplifies the 
noise. It is usual that pinhole changes are accompanied 
by PMT Gain adjustments for reaching a balance be- 
tween the signal intensity and the background noise. 
Narrowing the pinhole aperture leads to a reduced vo- 
lume contributing to the image, resulting in lower image 
intensity and the need for higher signal amplification. 
Reciprocally, increasing the pinhole aperture leads to  *Corresponding author. 
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higher signal and the PMT gain is modified in order to 
avoid pixel saturation. 

It was previously shown that image modifications as- 
sociated with pinhole aperture or PMT gain adjustments 
pose problems to gradient based techniques designed for 
the detection and description of affine-invariant regions 
[6,13]. The experiment presented in this paper extends 
our previous investigations in this direction, showing 
how three usual CSLM image enhancement methods 
alleviate or accentuate this problem. These three tech- 
niques are line averaging, spatial filtering and deconvo- 
lution. 

2. Methods 
2.1. Image Acquisition 

The image set that we use has been collected on a mouse 
kidney section, labeled by Alexa Fluor 488 WGA (Invi- 
trogen, Molecular Probes) by using a Zeiss LSM 510 
CSLM system. We have imaged the same field of view 
under five combinations of the pinhole aperture and PMT 
gain, resulted from concomitantly decreasing the PMT 
gain when increasing the dimension of the pinhole aper- 
ture. The pinhole aperture was varied between 1 and 2 
Airy Units (AU) in steps of 0.2 AU, while the PMT gain 
was varied between 450 and 400 Zeiss LSM 510 Units 
(ZU). For each of the six “pinhole-PMT” gain combina- 
tions, we have imaged 20 optical sections of 450 µm × 
450 µm, collected at 0.750 µm steps along the z axis by 
using a 20x − 0.8 NA objective. Higher pinhole aperture 
corresponds to higher optical section thickness. The pre- 
sented results have been achieved by using as support a 
reference image of the stack automatically detected by 
using the reference frame estimator introduced [14]. 

For excitation we have used a 488nm Ar laser line. 
The fluorescence signal was collected by passing the 
emitted light through a 530 - 595 nm band pass filter. In 
Figure 1, we present the brightest image of the stack col- 
lected at highest pinhole aperture/lowest pmt gain com- 
bination. 

2.2. Descriptor Extraction 

The SIFT keypoint descriptor is a histogram representa- 
tion that combines local gradient orientations and mag- 
nitudes from a certain neighborhood around a keypoint. 
More precisely, the descriptor is in fact a 3D histogram 
of gradient location and orientation, where location is 
quantized into a 4 × 4 location grid and the gradient an- 
gle is quantized into 8 orientations, one for each of the 
cardinal directions. The resulting descriptor is a norma- 
lized vector with the dimension of 128 elements [11]. 

The SIFT technique provides solutions for both key- 
point detection and description. In this experiment we  

 
Figure 1. Confocal optical section of mouse kidney tissue 
collected at 1 AU pinhole aperture/450 ZU PMT gain. 
 
concentrate our attention to the description capabilities of 
SIFT, extracting descriptors from fixed locations corres- 
ponding to a grid. In this purpose we employ the “vl_dsift” 
function of the VL-Feat library [15] for calculating 
DSIFT descriptors at fixed grid locations, which accord- 
ing to the authors is “roughly equivalent to running SIFT 
on a dense grid of locations at a fixed scale and orienta- 
tion”. 

We use a10 pixel grid spacing, resulting in 10,404 
features per image. The evaluated sizes for the SIFT bins, 
are 4, 6 and 8 pixels. 

2.3. Evaluated Methods 
Line averaging is a usual CSLM acquisition method that 
is used for compensating low SNR at the expense of 
bleaching. It consists in scanning the same line for a spe-
cified number of times before adding an averaged in-
stance to the image and moving on to the next line. The 
averaged instance that is added to the image is the arith-
metic mean of the summed pixel values from a specified 
number of scans. By averaging, persistent image content 
is preserved while fluctuated image content (usually 
noise) is attenuated. 

Median Filtering is a common nonlinear digital fil- 
tering technique that is used to remove noise while pre- 
serving edges [16]. It evaluates in turns each image pixel 
and decides whether it is representative for its surround- 
ings or not. The pixel values are replaced by the median 
of the pixels lying in a specified neighborhood. If the 
specified neighborhood contains an even number of pix- 
els, the average of the two middle pixel values is used. 
Median filtering is demonstrably better than Gaussian 
blur at removing noise whilst preserving edges for a  
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given, fixed window size. 
Deconvolution techniques are routinely used in mi- 

croscopy imaging for compensating the effect of the un- 
avoidable convolution with the Point Spread Function 
(PSF) of the optical signal generated by the sample [17]. 
This process can be mathematically expressed by the 
following equation: 

g = f × h 
where g represents the collected image which generated 
through the convolution of the real optical signal (f) ob- 
ject) and the system’s PSF (h). Deconvolution consists in 
solving Equation (2) in order to find out f, knowing both 
g and h. For deconvolving the image we have used a 
used a Classic Maximum Likelihood Estimation (CMLE) 
method available in the Huygens Professional (SVI, 
Netherlands) software platform. 

3. Results 
We consider all two-fold pairs of images in the set. The 
first image of a pair is always the image collected at a 
higher pinhole aperture and lower PMT gain. Each of the 
descriptors extracted from the first image in the pair are 
matched against the descriptors extracted from the other 
image by using a nearest-neighbour approach. The dis- 
tance that we use is Euclidean. If the matched nearest- 
neighbor is the descriptor extracted from the same x, y 
coordinates we consider to have found a “true positive”, 
otherwise a “false positive”. The performance of the 
nearest-neighbor matching of the descriptors is evaluated 
in terms of precision (Equation (1)): 

( )
Precision

True positives True positives False Positives= +
 (1) 

In Table 1 we show the calculated precision in case of 
the nearest-neighbor matching of DSIFT descriptors ex- 
tracted from the image set collected without line averag- 
ing and not post-processed—“RAW”. In Table 2 we 
refer to the precision associated to the three other eva-
luated image sets: image set collected without line aver-
aging and post-processed by median filtering (3 × 3 me-
dian filter)—“MF”; image set collected without line av-
eraging and deconvolved by a CMLE approach available 
in Huygens Professional—“DEC”; image set collected 
with line averaging (4 time averaging)—“AV4”. 

In the case of the “RAW” image set we observed a 
precision increase with higher bin size. Median filtering 
provides a slight improvement ranging from 4% to 7% 
depending on the considered bin size. The image set re- 
sulted after deconvolution is associated a massive de- 
crease of precision when compared to the RAW image 
set. The precision decrease varies with bin size and the 
lowest value is observed in the case of the lowest consi- 
dered bin size 4, going as low as 48% in this case. In the 
case of the image set collected under lie averaging we  

Table 1. Precision of nearest-neighbor matching calculated 
for the image set collected without averaging and not post- 
processed (“RAW”). 

 Precision 

Image set 
Bin size 

4 6 8 

RAW 0.43 0.56 0.63 

 
Table 2. Nearest-neighbor matching precision difference for 
image sets “MF”, “DEC”, “AV4” in respect to the “RAW” 
image set. 

 Precision difference 

Image set 
Bin size 

4 6 8 

MF 104% 106% 107% 

DEC 48% 56% 61% 

AV4 115% 108% 105% 

 
can observe increased precision when compared to the 
RAW image set. This increase is more consistent in the 
case of lower bin sizes, going as high as 15% for the 
lowest considered bin size. It should be noted that in the 
case of this image set the increase comes at the cost of 
light exposure, since each image is scanned four times 
before being added to the image. 

4. Conclusion 
Image modifications associated with combined pinhole 
aperture dimension—PMT gain changes raise problems 
to gradient based local feature description. These prob- 
lems can be alleviated or accentuated by specific CSLM 
image acquisition or image post-processing methods. By 
the experiment that we present in this paper we place a 
first step in the direction of identifying the methods that 
affect feature description and the ones that could be used 
to increase the performance of gradient based description 
techniques. We have evaluated three usual techniques 
that are commonly used for CSLM image enhancement. 
We have observed that median filtering and line averag- 
ing are associated with an increase in the precision of 
DSIFT descriptor based matching, while deconvolution 
yields negative effects in this regard. We consider that 
research efforts placed in this direction are important as a 
wide variety of biomedical computer vision applications 
rely on local feature description and matching and their 
efficient optimization cannot be achieved without identi- 
fying specific methods that need to be avoided and ones 
that need to exploited for enhancing the results. 
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