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ABSTRACT 

The continuation power flow method combined with the Jacobi-Davidson method is presented to trace the critical ei-
genvalues for power system small signal stability analysis. The continuation power flow based on a predictor- corrector 
technique is applied to evaluate a continuum of steady state power flow solutions as system parameters change; mean-
while, the critical eigenvalues are found by the Jacobi-Davidson method, and thereby the trajectories of the critical ei-
genvalues, Hopf bifurcation and saddle node bifurcation points can also be found by the proposed method. The numeri-
cal simulations are studied in the IEEE 30-bus test system. 
 
Keywords: Critical Eigenvalue Trajectory; Continuation Power Flow; Hopf bifurcation; Saddle Node Bifurcation; 

Small Signal Stability; Jacobi-Davidson Method 

1. Introduction 

The stability analyses of the rapid increase in complexity 
of modern power systems require the development of 
efficient and robust numerical methods. In terms of small 
signal stability analysis, power systems are usually mod-
eled by systems of differential-algebraic equations with 
large nonlinear dynamics. Simulation in frequency do-
main of the resulting dynamical systems heavily relies on 
numerical methods for eigenvalue problems and systems 
of linear equations. Direct application of conventional 
methods (e.g., QR method) for power system eigenvalue 
problems is computationally not feasible or inefficient. 
Thus, many special intensive researches for the small 
signal stability analysis of power systems have been 
proposed in the last two decades, which devoted to eva-
luating a selected (critical) subset of eigenvalues associ-
ated with the complete system response. 

In [1, 2], only the electromechanical modes; i.e. the 
rotor angle ones, are considered to be the critical eigen-
values and computed by a frequency response approach 
without formulating the system state matrix. A more 
general modal model reduction method, Dominant Pole 
Algorithm (DPA), has been proposed in [3] to compute 
the dominant poles in any specified Single Input Single 
Output (SISO) transfer function. The selective modal 
analysis approach [4] uses a reduced order model to 
compute the desired critical eigenvalues relevant to the 
selected modes. The invariant subspace iteration methods 

[5-15] are based on the use of the augmented system 
state equations, exploiting the Jacobian matrix sparsity, 
and most of them incorporate spectral transformations 
such as the shift-invert transformation [5,6], the S-matrix 
method [7] and the Cayley transformation [8,9] for the 
identification of the set of dominant eigenvalues (i.e., the 
largest modulus), which are the mapping of the critical 
(i.e., rightmost) eigenvalues of the system state matrix. 
Among them, the Jacobi-Davidson (JD) method [14, 15] 
is a recently developed subspace iteration method. Based 
on its characteristic on iterative construction of a partial 
Schur form, the deflation technique, and the effective 
restart, the JD method is suitable for the efficient com-
putation of a selected partial eigenvalues and is highly 
effective in detecting the clustered eigenvalues. 

All of the above mentioned critical eigenvalue solvers 
are normally applied to calculate critical eigenvalues 
under a given system operating scenario. As the system 
equilibrium point often vary with respect to any control 
and load variations, critical eigenvalues should also be 
recalculated. In such case, the critical eigenvalue trace 
methods are of interest to the researchers. In [16], an 
integration based eigenvalue trajectory tracing method 
was proposed to identify both oscillatory stability margin 
and damping margin, and indexes were derived to iden-
tify Hopf bifurcation. A critical eigenvalue tracing me-
thod based on the continuation of the invariant subspace 
algorithm combined with the projected Arnoldi method is 
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proposed in [17]. 
In this paper, the continuation power flow combined 

with the Jacobi-Davidson method is proposed to trace the 
critical eigenvalues for power system small signal stabil-
ity analysis. 

2. Small Signal Stability 

The dynamic behavior of power systems can be de-
scribed by a set of nonlinear differential equations to-
gether with a set of algebraic equations (DAEs) [18] 
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where x is the vector of the state variables, y is the vector 
of the algebraic variables, and u is the vector of system 
parameters, e.g., the load level of the whole system. In 
the case of small signal stability analysis, (1) is linearized 
around a system operating point to yield the linearized 
DAEs model 
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where Atotal is the total system Jacobian matrix,  denotes 
an incremental change in steady state value. By elimi-
nating the algebraic variables y in (2), the equivalent 
system state matrix can be formulated as 

1( ) ( ) ( ) ( )x y y xA f u f u g u g u  . 

According to the Lyapunov's first method [19], the small 
signal stability of the nonlinear system (1) in the neigh-
borhood of the operating point can be analyzed by in-
specting the eigenvalues of the linearized system (2); e.g., 
all of the eigenvalues of the system state matrix A should 
have negative real parts to maintain the stability. Ac-
cordingly, eigenvalues close to the imaginary axis of the 
complex plane are the critical eigenvalues of interest to 
analyze the stability of power system oscillations. 

Equation (3) describes that the critical eigenvalues and 
corresponding eigenvectors construct a dominant invari-
ant subspace with respect to the entire eigenspace of the 
system state matrix A. 

( ) ( ) ( ) ( )A u V u V u Λ u              (3) 

where the column vectors in V(u) are the basis in the in- 
variant subspace, and the eigenvalues of (u) are a frac- 
tion of the corresponding eigenvalues in the full matrix 
A(u). Additionally, when the operating point varies with 
respect to the system parameters changes, the critical 
eigenvalues and corresponding eigenvectors may also 
change. A Hopf bifurcation arises when there is a com- 
plex conjugate eigenpair cross the imaginary axis first. In 
such case, the system becomes oscillatory unstable. At 
the loadability limit, the traditional Newton- Raphson 

method of obtaining load flow solution will break down. 
In this case, the system Jacobian will become singular, 
thus so-called saddle node bifurcation. 

3. Critical Eigenvalues Tracing Method 

The idea of proposed method is based on combing con- 
tinuation power flow with the Jacobi-Davidson method 
to identify and trace the critical eigenvalue trajectories. 
The continuation power flow calculates a series of power 
system steady state solutions with respect to a given 
power injection variation scenario. During the continua-
tion power flow process, the Jacobi-Davidson method 
with deflation technique is applied to effectively calcu-
late the critical eigenvalues, and thereby the critical ei-
genvalue trajectories, Hopf bifurcation (HB) and saddle 
node bifurcation (SNB) points can also be found. 

3.1. Continuation Power Flow 

The concept of the continuation power flow [20] is based 
on a predictor-corrector technique to evaluate a con- 
tinuum of steady state power flow solutions starting at 
some base load and leading to the steady state stability 
limit (SNB) of the system. A salient feature of the con- 
tinuation power flow is that it remains well-conditioned 
around the SNB point. As a consequence, divergence due 
to ill-conditioning is not encountered in the vicinity of 
SNB point, even when single-precision computation is 
used. 

The continuation power flow based on a predictor- 
corrector technique is described as follows, and is shown 
in Figure 1. 
 Predictor step: The function of the predictor is to 

find an approximation point for the next solution. – Sup- 
pose the continuation process is at the ith step with the 
solution ( , , ).i i ix y u  The predictor tries to find an approxi- 
mation point( , , )p p px y u  for next solution )1 ! 1( , ,i i ix y u   , 
and can be formulated as 
 

 

Figure 1. Continuation power flow. 
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where u is the loading parameter which will vary from 
base case to the point of maximum loadability,  is the 
step-size for the next prediction, and 
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where ek is a column vector of zeros with a single 1 at the 
position of the unknown that is chosen to be the con- 
tinuation parameter. 
 Corrector step: Using the predicted value as the ini-

tial condition ),, for the nonlinear iteration, the 
augmented power flow equations (5)-(6) are then solved 
by the Newton iterative method to achieve the solu-
tion ),,( 111 iy . 
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3.2. Jacobi-Davidson Method 

The Jacobi-Davidson (JD) subspace iteration method [14] 
is applicable to a selected eigenvalue and corresponding 
eigenvector approximations of a general unsymmetric 

 matrix A, in which each iteration combines the 
idea of Davidson’s and Jacobi’s methods. In this ap- 
proach, a search subspace span{V} is generated onto 
which the given eigenproblem, , is projected, 
where V is a complex n  matrix and its columns 
constitute an orthonormal basis v1,v2,…,vj, j<<n. The 
‘Davidson’ part, based on the Ritz-Galerkin condition: 

n n

qλAq 
j

},...,,{
~

21 vvvVuλ  jAVu  , is to select an approximate 
eigenpair of A with the reduced  system, which 
can be represented as 

j j

.0)
~

( **  uVVλAVV               (7) 

Then the projected eigenproblem (7) is solved and a 
solution  is selected. The Ritz pair is defined as 

 to form an approximate eigenpair of A, with 
the residual vector 
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(  . The ‘Jacobi’ part 
forms an orthogonal correction for the current eigenvec-
tor approximation q~ , by the solution of qv ~  in the 
following correction equation 











.)~~)(
~

)(~~(

0~

**

*

rvqqIIλAqqI

vq
    (8) 

Equation (8) defines an optimal expansion (orthogonal 
basis) of the search subspace, span{V, v}; the search 
subspace accumulates valuable information for the de-
sired eigenvector approximation for every iteration. 

When the search subspace V reaches a certain maxi- 
mum dimension nj max , the JD method adopts an im-
plicit restart strategy to reduce the dimension of the 
search subspace from jmax to jmin (jmin ≤ j ≤ jmax) by dis- 
carding the columns 1minjv  through , and contin- 
ues the next JD iteration with min . Here, 
the JD algorithm is obviously easy to implement because 

 is already orthogonal, and the JD algo- 
rithm is repeated until the norm of the residual ||r|| is 
smaller than a given tolerance. 

maxjv

1(:,VU ): jV 

):1(:, minjVU

A JD-style method, called JDQR [15], is designed to 
find a number of desired eigenpairs by constructing a 
partial Schur form of A iteratively. A deflation technique 
has been successfully incorporated into the JDQR me-
thod, which would avoid repeated computation of the 
detected eigenvalues. The JDQR method is described as 
follows. 

Suppose that k-1 Schur pairs have been detected and 
formed with the partial Schur form 111   kkk RQAQ , 
where 1k  is a Q )1(  kn

( k

,(λ

 matrix with orthonormal 
columns, and 1k  is a  upper triangu-
lar matrix. The diagonal elements of Rk-1 are eigenvalues 
of A, and the first column of Qk-1 is an eigenvector of A. 
A suitable new Schur pair  will be used to expand 

and , so that 
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Thus, the new Schur pair  is also an eigenpair 
of the deflated matrix  , 
and the deflated matrix 
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 has the same eigenvalues as 
A except the detected eigenvalues that are transformed to 
zero; the deflation part 11   effectively avoids 
repeated computation of the detected eigenvalues. Then, 
the search subspace span {V} is expanded by the or-
thogonal complement of v to V, where v is the solution of 
the following deflated correction equation 

*
kk QQ




















,)~~(

))(
~

)()(~~(

and0~,0

*

*
11

*
11

*

**
1

rvqqI

QQIIλAQQIqqI

vqvQ

kkkk

k

 (11) 

Copyright © 2013 SciRes.                                                                                  EPE 



S.-H. TSAI  ET  AL. 680 

where  and 
. 
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3.3. Implementation of Algorithm 

The flowchart of the solution algorithm is shown in Fig-
ure 2, and the step-by-step procedure is described as 
follows: 

a) Solve base case power flow solution: Perform a 
specified base case Newton-Raphson power flow for 
evaluating the initial conditions of state variables. 

b) Find Jacobian matrix: Compute the linearized DAEs 
model (2) by both the initial conditions and the power 
flow solution. 

c) Find critical eigenvalues: Compute the critical ei- 
genvalues of the Jacobian matrix by the JD method with 
a given sorting criterion, i.e. the rightmost eigenvalues or 
the least damping ratio eigenvalues. 

d) Identify Hopf bifurcation: Detect the real part of the 
critical eigenvalues for Hop bifurcation, i.e. the complex 
conjugate eigenvalue crosses through the imaginary axis 
of the complex plane first. 

e) Find the next equilibrium states: Perform the con-
tinuation power flow with a given control strategy (a 
specified control variable and increment factor) for the 
next operating equilibrium states. 
 

 

Figure 2. Flowchart for critical eigenvalues tracing. 

f) Identify stability limit: Check the SNB point by 
monitoring the control variable variations. If the system 
reaches to the SNB point, stop the algorithm; otherwise 
go to step b). 

4. Numerical Results 

In this section, numerical examples were examined 
through the IEEE-30 bus test system. The system has 6 
machines and 59 state variables, and the dynamic model 
is linearized around a base operation point with a total 
load of 275.2 MW. Figure 3 shows the distribution of 
the partial rightmost eigenvalues at the based load. The 
software package MATLAB v7.1 is used to implement 
the proposed method. In our work, the damping ratio and 
the real part of the eigenvalues were used as the selection 
criteria to trace the critical eigenvalues. The convergence 
tolerance of the JD method is set to 10-8. The load in- 
crease pattern is mainly performed on the PQ buses 
starting at the base load and leading to the steady state 
stability limit of the system.  

4.1. Tracing of the Rightmost Eigenvalues 

For this case, the critical eigenvalues with largest real 
part are the desired eigenvalues. There are 6 rightmost 
eigenvalues are traced by the proposed method as shown 
in Figure 4. The Hopf bifurcation occurs on the 1.859 
p.u. load level with respect to the base case, i.e., there is 
an eigenpair passing through the imaginary axis of the 
complex plane. When the system has a load level of 
2.275 p.u., the system reaches to stability limit, i.e., the 
SNB occur. In such case, the system operates at point 
where the Jacobian matrix has a zero eigenvalue. When 
system power demands go beyond the maximum power 
limit, the power system is divergent and becomes un-
solvable. The continuation power flow remains well- 
conditioned around the SNB point. 
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Figure 3. Distribution of the partial rightmost eigenvalues 
for the IEEE-30 bus test system. 
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4.2. Tracing of the Eigenvalues with Least 
Damping Ratio 

In this case, the load increase pattern is the same as the 
case in section 4.1 and therefore has predicable same 
results. The critical eigenvalues with least damping ratios 
are the desired eigenvalues. There are 6 eigenvalues with 
least damping ratios are traced by the proposed method 
as shown in Figure 5. The Hopf bifurcation occurs on 
the 1.859 p.u. load level with respect to the base case, i.e., 
there is an eigenpair whose damping ratio is zero. When 
the system has a load level of 2.275 p.u., the system 
reaches to stability limit, which is not shown in Figure 5. 

The above mentioned simulation results have shown 
that the critical eigenvalues can be effectively detected 
by the proposed method. 

5. Conclusions 

This paper has presented an effective approach to trace 
the critical eigenvalue trajectories for the small signal 
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Figure 4. Rightmost eigenvalues trajectories. 
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Figure 5. Least damping ratio eigenvalues trajectories. 

stability analysis of power systems. Both the rightmost 
and least damping ratio eigenvalues tracing were effect- 
tively carried out by the proposed method combining the 
continuation power flow with the JD method. The simu- 
lation results have shown that the Hopf bifurcation and 
saddle node bifurcation points can also be detected by the 
proposed algorithm and provide useful information for 
the small signal stability analysis. 
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