
Energy and Power Engineering, 2013, 5, 561-565 
doi:10.4236/epe.2013.54B107 Published Online July 2013 (http://www.scirp.org/journal/epe) 

Power Quality Disturbance Classification Method Based 
on Wavelet Transform and SVM Multi-class Algorithms 

Xiao Fei 
Southwest Jiaotong University, School of Electrical Engineering, ChengDu, China 

Email: 776526963@qq.com 
 

Received March, 2013 

ABSTRACT 

The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality 
electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients 
and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using 
SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the 
Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are 
suitable methods for power quality disturbance classification. 
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1. Introduction 

Increasingly superior electrical power supply has become 
necessary with the development and extensive applica-
tion of electricity and electronics technology. However, 
all types of non-linear impact loads worsen electrical 
energy pollution. Given this backdrop, researchers have 
directed considerable attention to power quality distur-
bance classification because of its ability to determine 
the cause of energy disturbance and improve power qual-
ity. This approach is currently an important area of re-
search on power systems. 

The commonly used methods for extracting power 
disturbance features are wavelet transforms [1], Fourier 
transforms [2], and S transforms [3]. These techniques 
share certain attributes and can effectively extract energy 
characteristics. Nevertheless, the accuracy of these clas-
sification methods is tremendously affected by environ-
mental noise. Other available methods include neural 
network classification [4], support vector machine [5], 
and particle swarm optimization [6], which is typically 
used to classify disturbance signals. These methods are 
similar in that they require effective training samples, as 
well as present high classification accuracy, high com-
putational complexity, and weak classification for multi- 
class samples.  

In this paper, we use the wavelet analysis method to 
extract the effective feature vectors of power quality dis-
turbances, and regard these vectors as SVM training 
samples. We take advantage of multi-class SVM in clas-
sifying different power disturbance scenarios, such as 

voltage sag, voltage swell, voltage interruption, pulse 
transient, and harmonic classification. Multi-class SVM 
presents higher classification accuracy and efficiency in 
power systems than do other classifiers. 

2. Feature Vectors of Extraction Based on 
Wavelet Transform 

The wavelet transform concept was originally proposed 
by French geophysicist J. Morlet in 1984. Theoretical 
physicist A. Grossman established the theoretical system 
of wavelet transform on the basis of the theory of transla-
tion and scale invariance. French mathematician Y. 
Meyer constructed the first wavelet.  

The Fourier transform is a useful tool for analyzing the 
frequency components of a signal. However, the window 
length used in this operation limits frequency resolutions. 
Wavelet transforms are based on small wavelets with 
limited durations; thus, they present higher frequency 
resolutions at low frequencies and low time resolutions. 
They also exhibit higher time resolutions and lower fre-
quency resolutions at high frequencies. With these prop-
erties, wavelet transforms are adaptive to signal analysis. 

Wavelet transform involves the displacement of basic 
wavelet functions ( )t . Then, the inner products of sig-
nals ( )x t  and ( )t  are calculated under different 
scales thus: 
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where   is the translating parameter that indicates the 

Copyright © 2013 SciRes.                                                                                  EPE 



X. FEI 562 

region of interest;  denotes the scaling parameter or 
scale, and measures the degree of compression. In the 
frequency domain, this function is expressed as 
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where ( )x   is the Fourier transform of ( )x t ; ( )   
is the Fourier transform of ( )t . 

Selecting an appropriate wavelet converts ( )t  in the 
time domain into a finite support and turns ( )   in the 
frequency domain into a relatively concentrated variable. 
Implementing wavelet transform in the time and fre-
quency domains also characterizes local signal features. 
The energy distribution of various power disturbance 
signals differs at various frequency bands. Thus, we can 
incorporate different energy distributions in different 
frequency bands as bases for distinguishing power dis-
turbances.  

On the basis of references [7, 8], we choose sym4 as 
the mother wavelet, and decompose power disturbance 
signals into 11 layers. A total of 23 characteristic values 
constitute a feature vector. 1 11  represents the quad-
ratic sum of the eleventh to the first layers of coefficients. 

 are calculated as follows [9]: 
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where 11std D  is the standard deviation of the eleventh 
layer of decomposition coefficients, 11,10,9std D  de-
notes the standard deviation of the ninth to eleventh lay-
ers of decomposition coefficients, and 11mean D  
represents the average of the absolute value of decompo-
sition coefficients. 

3. Multi-class SVM Classification Model 

The commonly used multi-class SVM classification al-
gorithm is 1-to-1 (1-vs-SVM). When a classification 
problem is highly complicated, however, training time 
and computational complexity significantly increase. To 

illustrate, let us consider  types of samples that need 
to be classified. To solve this problem, we construct a 

k

( 1) / 2k k   hyper-plane.  
To reduce computational complexity, researchers cre-

ated another classification algorithm, 1-VS-allSVM, this 
involves hyper-plane classification that distinguishes 
between one class of samples and the rest of several class 
samples. Only the  hyper-plane can solve the 
previous problem--  types of samples that need to be 
classified. This method is an extension of two types of 
SVM. The prediction accuracy of the classifier is imper-
fect because of the huge difference between the number 
of a single class of samples and the number of the rest of 
the class samples.  

( 2k k 
k

)

)
In this paper, we use the BT-SVM method to improve 

the accuracy and efficiency of the classifier.  
types of samples require classification. First, we con-
struct  by assigning the 1st sample type as a posi-
tive sample and the 2nd, 3rd … kth types as negative sam-
ples. We then construct  by denoting the 2nd 
sample type as a positive sample and the 3rd, 4th … kth 

types as negative samples. According to the previous 
method, we construct subsequent classifiers  

( 2k k 

3SVM 

1SVM

( 1)k

2SVM

SVM  . The number of negative samples gradually 
decreases; training time also decreases. We choose 
BT-SVM [10] to classify different scenarios of power 
quality disturbance. The algorithm is implemented as 
follows: 

1) Divide training sample  into sub-
sets T and F, and regard  as positive and negative 
samples, respectively. These samples consist of a classi-
fication function 

( 1,2,..., )iC i k
F

,..., 2 )

,T

1, 2( )( N
i

2) Take 
f x i

)
 . 

(if x  as the root node for constructing a bi-
nary tree. 

3) Repeat steps (1) and (2), then use T as the training 
data for the left subtree and F to generate a classification 
function for the right subtree. T is also used to construct 
the classification function. 

4) Repeat step (3) until training sample ( 1, 2,iC i   
 is converted into a group of child nodes; ..., )k

5) Input testing sample i ix c  to the corresponding 
binary tree ( )if x . 

6) If all testing samples i ix c  belong to the ith 
sample type, then the classification is completed. The 
same applies when all testing samples i ix c  are re-
quired to traverse from the root node to pass through all 
the nodes until the category to which the samples belong 
are identified. 

We use different support vector machines to match 
different scenarios of power quality disturbance. Thus, 
every support vector machine can solve a particular clas-
sification problem and improve accuracy by using train-
ing samples. 
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4. Simulation and Analysis 

4.1. Types of Power Quality Disturbances 

In the simulation experiment, we construct six types of 
power disturbance models: voltage sag, voltage swell, 
voltage interruption, oscillating transient, harmonic, and 
flicker. The mathematical models are as follows: 

1) Normal signal model 

( ) sinz t A t                 (3) 

where A is the amplitude of a signal,   denotes the 
frequency of the signal, and t represents time. 

2) Voltage interruption model 

1 2( ) [1 ( ( ) ( ))]sinz t A u t t u t t t          (4) 

where   is the amplitude of an additional oscillation 
signal and 0.9 0.99 

t
( )u t

; here, T is the period of the 
signal. We assume that 2 1 , the start time of 
a disturbance is 1 , and the completion time of distur-
bance is .  is a step function. 

8T t t T  

2

3) Voltage sag model 
t

1 2( ) [1 ( ( ) ( ))]sinz t A u t t u t t t          (5) 

where   is the amplitude of the additional oscillation 
signal and 0.1 0.9  ; here, . 2 1 8T t t T  

4) Voltage swell model 

1 2( ) [1 ( ( ) ( ))]sinz t A u t t u t t t           (6) 

where 0.1 0.5   and 2 1 8T t t T   . 
5) Harmonic model 
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where 0.05 0.15i  . 
6) Oscillating transient model 

( ) sin( ) exp( ( ) / )

*sin( ( ))
osc b osc
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z t t t t

t t
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where osc  is the oscillation constant, nosc  denotes the 
oscillation frequency, and osc  is the amplitude of the 
additional oscillation signal. (0.008,0.04)osc s  , 

nosc , 400)(100 Hz  , and 0.1 0.6osc  . 
7) Flicker model 

( ) (1 sin )sinz t A t t               (9) 

where 0.1 0.2   0.1 0.2i    
220A  50f 

. 
We assume that , , 2*3.14*50  , 

and the rest of the parameters are constrained by their 
own models. The six types of power transient distur-
bances are illustrated in Figure 1. 

4.2. Classification of Power Quality Disturbances 

We construct six types of mathematical models to simu-
late electric power disturbances, namely, voltage inter-

ruption, voltage sag, voltage swell, harmonics, oscillating 
transient, and flicker. We also simulate 600 sets of sam-
ples with every type of disturbance scenario. We use a 
multi-class SVM algorithm to classify the samples. The 
four different types of kernel functions are the Gaussian 
radial basis function (GRBF), exponential radial basis 
function (ERBF), hyperbolic tangent function (HTF), and 
polynomial function (PF). These are used in SVM algo-
rithms. To obtain an accurate, credible result, we carry  
 

 
(a) voltage interruption 

 
(b) voltage sag 

 
(c) voltage swell 

 
(d) harmonics 

 
(e) oscillating transient 

 
(f) flicker 

Figure 1. Oscillogram of various disturbance signals. 
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T ion  for nics

 GRBF 

out nd 

Table 1. Classification results for voltage interruption. 

 GRBF ERBF HTF PF 1 PF2 

 calculations 10 times for every kernel function a
adopt 150 or 160 sets of samples each time. The classifi-
cation results are shown in Tables 1-6. 
 

 K=2 K=3 K=4 K=11 K=12 

1 150 150 150 73 134 

2 150 150 150 135 150 

3 150 150 150 77 137 

4 150 150 150 143 74 

5 150 150 150 67 85 

6 150 150 150 114 109 

7 150 150 150 75 145 

8 150 150 150 100 73 

9 150 150 150 107 94 

10 150 150 150 71 145 

 1 1 100% 6  7  00% 00% 4.1% 6.4%

 
Table 2. Classification results for voltage sag. 

 GRBF ERBF HTF PF 1 PF2 

 K=2 K=3 K=4 K=11 K=12 

1 160 160 160 159 129 

2 160 160 160 96 78 

3 160 160 160 59 119 

4 160 160 160 70 95 

5 160 160 160 156 130 

6 160 160 160 83 104 

7 160 160 160 128 100 

8 160 160 160 113 79 

9 160 160 160 157 127 

10 160 160 160 81 69 

 100% 100% 100% 6  6  8.9% 4.4%

 
Table 3. Classification results for voltage swell. 

 GRBF ERBF HTF PF 1 PF2 

 K=2 K=3 K=4 K=11 K=12 

1 150 150 150 137 81 

2 150 150 150 87 150 

3 150 150 150 132 131 

4 150 150 150 78 78 

5 150 150 150 115 82 

6 150 150 150 96 76 

7 150 150 150 84 40 

8 150 150 150 111 45 

9 150 150 150 140 148 

10 150 150 150 121 105 

 100%

able 4. Classificat  results  harmo . 

ERBF HTF PF 1 PF2 

 K=2 K=3 K=4 K=11 K=12 

1 160 160 160 149 41 

2 160 160 160 132 125 

3 160 160 160 131 56 

4 160 160 160 120 91 

5 160 160 160 67 74 

6 160 160 160 75 93 

7 160 160 160 87 49 

8 160 160 160 153 148 

9 160 160 160 137 160 

10 160 160 160 56 112 

 1 1 100% 6  6  00% 00% 9.2% 9.3%

 
Table 5. Classification results for f oscillation transient. 

 GRBF ERBF HTF PF 1 PF2 

 K=2 K=3 K=4 K=11 K=12 

1 160 160 160 110 41 

2 160 160 160 160 66 

3 160 160 160 135 43 

4 160 160 160 78 160 

5 160 160 160 119 88 

6 160 160 160 160 158 

7 160 160 160 160 129 

8 160 160 160 108 65 

9 160 160 160 136 149 

10 160 160 160 40 109 

 100% 100% 100% 7  6  5.4% 3.0%

 
Table 6. Classification results for oscillation transient. 

 GRBF ERBF HTF PF 1 PF2 

 K=2 K=3 K=4 K=11 K=12 

1 160 160 160 136 85 

2 160 160 160 148 53 

3 160 160 160 97 137 

4 160 160 160 95 70 

5 160 160 160 75 157 

6 160 160 160 119 113 

7 160 160 160 80 81 

8 160 160 160 140 88 

9 160 160 160 129 160 

10 160 160 160 87 72 

 100% 100% 100% 69.1% 63.5%   7  6  100% 100% 3.4% 2.4%
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