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ABSTRACT 

In this paper, we implement a new approach coupled with the iteration method. This procedure is obtained by combin-
ing He’s frequency-amplitude formulation and He’s energy balance method into a new iteration procedure such that 
excellent approximate analytical solutions, valid for small as well as large values of amplitude, can be determined for 
nonlinear oscillators. This study has clarified the motion equation of nonlinear oscillators by the iteration method to 
obtain the relationship between amplitude and angular frequency. We compare the approximate periods obtained by our 
procedure with the numerical solution and with other methods like energy balance method and variational iteration 
method. The results show that the approximations are of extreme accuracy. 
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1. Introduction 

Nonlinear oscillations problem is important in the physi- 
cal science, mechanical structures and other kind of 
mathematical sciences. Most of real systems are modeled 
by nonlinear differential equations which are important 
issues in mechanical structures, mathematical physics 
and engineering. Recently, much attention has been fo- 
cused on the properties to solve nonlinear equations in 
mechanical systems. In this way, some kind of these 
methods like Harmonic balance method (HBM) [1], 
Newton harmonic balance method (NHBM) [2], Fre- 
quency-amplitude formulation (FAF) [3-5], Energy bal- 
ance method (EBM) [6,7], Variational iteration method 
(VIM) [8,9], Homotopy perturbation method (HPM) [10- 
12], Homotopy analysis method (HAM) [13], and Max- 
Min method (MMA) [14,15] are introduced for nonlinear 
oscillatory systems. 

Our main aim in this paper is to apply a new approach 
coupled with the iteration method by combining He’s 
FAF and He’s EBM. We compare the numerical solution 
with others methods like energy balance method and 
variational iteration method. We examine accuracy of the 
approximation methods. 

2. Solution Procedure 

We consider a generalized nonlinear oscillator in the 
form: 

 , , 0,u f u u u                    (1) 

under the initial conditions: 

   0 , 0u A u 0.               (2) 

Based on He’s frequency-amplitude formulation ap- 
proach [3,4]. The trial function to determine the angular 
frequency ω is given by  

cos ,u A t                   (3) 

substituting from Equation (3) into Equation (1), one can 
obtain the following residual as 

   2 2cos cos , sin , cos .R t A t f A t A t A t            

(4) 

Introducing a new function,  H t , defined as [6]  

   
0

2
cos( )d 0, .

T
H t R t t t T




         (5) 

Solving the above equation, the relationship between 
the amplitude and frequency of the oscillator can be ob- *Corresponding author. 
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tained: 

3. Applications 

In this section, some practical examples for some strongly 
nonlinear vibration system are illustrated to show the ap- 
plicability, accuracy and effectiveness of the present 
method.  

3.1. Autonomous Conservative Oscillator 

It is known that the free vibrations of an autonomous 
conservative oscillator with inertia and static type fifth- 
order non-linearities is expressed by [7,16,17]. 
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   (6) 

The initial conditions for Equation (6) are given by 
 and  0u  d d 0,u t   where A represents amplitude 

of the oscillation. 
Motion is assumed to start from the position of maxi- 

mum displacement with zero initial velocity   is an 
integer which may take values of 1  , 0 or −1, and 1,  

2 ,  3  and 4  are positive parameters in Table 1. 
By using the following trial function to determine the 

angular frequency  : 

cos .u A t                  (7) 

Substituting the above trial functions into Equation (6) 
results in, the following residual 
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(8) 

Using Equation (8) into Equation (5), we can easily 
obtain  

   

 

2

0

2 4 2 4 2
3 4 1 2

cos d

6 5 8 8 4 4
8

H t R t t t

A
A A A A




     





       


0. 

  (9) 

Solving the above equation, an approximate frequency 
  as a function of amplitude A  as follow: 

2 4
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           (10) 

Hence, the approximate solution can be readily ob- 
tained 

Table 1. Values of dimensionless parameters i  in Equation 

(6) for four models [16]. 

Mode 1  2  3  4  

1 0.326845 0.129579 0.232598 0.087584 

2 1.642033 0.913055 0.313561 0.204297 

3 4.051486 1.665232 0.281418 0.149677 

4 8.205578 3.145368 0.272313 0.133708 
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      (11) 

Mehdipour et al. [7] obtained the approximate fre- 
quency for Equation (6) by the energy balance method 

2 4
3 4

2 4
1 2

12 9 73
.

3 4 2EBM

A A

A A

  


 
 


 

        (12) 

The values of dimensionless parameters 1 , 2 , 3  
and 4  associated with each of the four calculation 
modes are shown in Table 2 [7]. 

Additionally, the comparison between these method- 
ologies can be found in Table 2 and Figure 1. It has been 
shown that the results of analytical approximate solution 
are in good agreement with those obtained from the results 
of energy balance method [7], and with an accurate nu-
merical solution using fourth-order Runge-Kutta method 
(R-K) as shown in Table 2 and Figure 1. 

3.2. Tapered Beams 

Tapered beams is an important model for engineering 
structures which require a variable stiffness along the 
length, such as moving arms and turbine blades [18-20]. 
In dimensionless form, the governing differential equa- 
tion corresponding to fundamental vibration mode of a 
tapered beam is given by [20]. 
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Assume that the solution can be expressed as: u(t) = 
Acosωt. 

Similarly, substituting the trial solution into Equation 
(13), this leads to the following residual 

   
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   (14) 

Using Equation (14) into Equation (5) we can easily 
obtain  
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Table 2. The comparison between energy balance method 
[7] and analytical approximate solution for four modes (1 - 
4) (λ = 1).  

 Mode 1 Mode 2 Mode 3 Mode 4 

A ω [7] ω ω [7] ω ω [7] ω ω [7] ω 

0.01 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998

0.1 1.0001 1.0001 0.9971 0.9911 0.9911 0.9910 0.9810 0.9810

0.5 1.0019 1.0015 0.9350 0.8309 0.8309 0.8278 0.7134 0.7093

1 1.0124 1.0071 0.8129 0.6142 0.6142 0.5978 0.4666 0.4528

 

 
(a)                            (b) 

 
(c)                            (d) 

Figure 1. The comparison between EBM solution (.....), 
analytical approximate solution (- - -) and numerical solu-
tion, solved by the Runge-Kutta method of order 4 () for 
four modes (λ = 1, A = 1). 
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Solving the above equation, an approximate frequency 
as a function of amplitude equals: 
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                 (16) 

which is the same as given by Hoseini et al. [20].  
Hence, the approximate solution can be readily ob- 

tained 
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            (17) 

To illustrate the validity of the analytical approximate 
solution for this example, the results are compared with 
the variational iteration method [21] and with an accurate 
numerical solution, using fourth-order Runge-Kutta 
method (R-K) in Figure 2. 

 
(a)                            (b) 

 
(c)                            (d) 

Figure 2. The comparison between variational iteration 
method (....), analytical approximate solution (- - -) and nu-
merical solution, solved by the Runge-Kutta method of or-
der 4 (). (a) Ɛ1 = 0.1, Ɛ2 = 1, A = 1; (b) Ɛ1 = 0.1, Ɛ2 = 1, A = 2; 
(c) Ɛ1 = 1, Ɛ2 = 2, A = 1; (d) Ɛ1 = 1, Ɛ2 = 1, A = 1. 

3.3. Motion of the Particle on Arrange Parabola 

The governing equation of motion and initial conditions 
can be expressed as [5,22-24]. 

   
22

2 2 2
2

d d d
1 4 4 0, 0 , 0,

d dd

u u u
q u q u u u A

t tt
       
 



     (18) 

where  and 0q  0   are known positive constants. 
We choose trial function   cosu t A t , where   is 
assumed to be the frequency of the nonlinear oscillator. 

Similar to previous examples we have 

   2 3 2 2 3 2 22 cos 2 cos3 .R t A A A q t A q t        

     (19) 

Finally, the frequency amplitude relationship can be 
obtained as: 

2
2 2

,
1 2A q

 



                (20) 

which is the same as given by Davodi et al. [5]. Hence, 
the approximate solution can be obtained as 

  2 2
cos .

1 2
u t A t

A q

 
   

           (21) 

For this following value of parameters the numerical 
results are compared with EBM [5] and fourth-order 
Runge-Kutta method (R-K) as shown in Figure 3. 

4. Conclusion 

The methods to find analytical approximate solutions for 
nonlinear vibrating equations are not closed, which have 
important application in physical sciences and engineer-  
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(a)                            (b) 

 
(c)                            (d) 

Figure 3. The comparison between EBM solution (- - -), 
analytical approximate solution (....) and numerical solution, 
solved by the Runge-Kutta method of order 4 (). (a) ∆ = 1, 
q = 0.2, A = 0.2; (b) ∆ = 1.5, q = 0.6, A = 0.1; (c) ∆ = 1, q = 2, 
A = 1; (d) ∆ = 1, q = 1, A = 1. 
 
ing. In this way, we illustrated that the present method is 
very effective and convenient and does not require lin- 
earization or small perturbation. The obtained analytical 
solutions were compared with those calculated by the 
energy balance method and variational iteration method. 
The obtained results are valid for the whole solution do- 
main with high accuracy. In comparison to fourth-order 
Runge-Kutta method, which is powerful numerical solu- 
tion, the results show that the present method is very 
convenient for solving nonlinear equations and also can 
be used for strong nonlinear oscillators.  
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