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ABSTRACT 

A problem of pursuit in the controlled systems of elliptic type without mixed derivatives with variable coefficients was 
considered. The model of the considered system is described by partial differential equations. The players (opponents) 
control parameters occur on the right-hand side of the equation and are subjected to various constraints. The first 
player’s goal is to bring the system from one state into another desired state; the second player’s goal is to prevent this 
from happening. We represent new sufficient conditions for bringing the system from one state into another. The fi-
nite-difference method is used to solve this problem. 
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1. Introduction 

Some problem formulations in the theory of differential 
games may be illustrated by motion of two controlled 
objects, pursuer and evader. Let in the course of motion 
the objects continuously observe each other and at each 
time instant correct their motions depending on the in-
formation about the adversary. Depending on the pur-
suer’s aim, the problem of pursuit is then formulated as 
follows: using the information about the evader, at each 
time instant t select a control such that coincidence of the 
objects’ spatial coordinates is reached as soon as possi-
ble. 

The majority of studies consider the case where be-
havior of the lumped-parameter model described by a 
system of ordinary differential equations. This scheme 
encompasses many problems of differential games aris-
ing in diverse filed of the natural sciences. The mathe-
matical issues of the differential games describing the 
lumped-parameter systems were developed in detail. 

In many applications, however, the lumped-parameter 
models describe phenomena inadequately. It often turns 
out that a system which is optimal in the sense of a sim-
plified model does not use the additional designed-in 
potentialities of control. The distributed-parameter mod-
els obeying the differential equations with partial deriva-
tives offer a better, more adequate description. Use of 
these equations also gives rise to various game problems 
of which one is the subject matter of the present paper. It 
focuses only on the problem of pursuit. Therefore, we 
make an assumption about the nature of information for 

this problem. 

2. Formulation of the Problem 

The operated distributed system described by the elliptic 
equations (see, for example, [1,2]) is considered 

2 2 2 2( , ) / ( , ) / ( ( , ), ( , ))a x y z x b x y z y f u x y x y      ,  (1) 

/ ( , ) ( ,z x y z x )y      ,  ( , )x y 

where ( , )z z x y  – unknown function, ,  
– continuous functions in  
with border 

( , )a x y
):0 1,x 

( , )b x y
0 1}y {( ,x y

 , ( , )x y  – smooth function on  ,   
–  external normal. It is supposed that there is a positive 
constant   such that for any  the inequal-
ity,

( , )x y 
( , )yb x  , ( , )u u x y , ( , )x y 

2 ( )L 
  – operating func-

tions is executed from a class . The first (pursuing) 
player, (pursued or escaping) the player, u P , Q  , 
P  and Q  – nonempty compacts in  disposes of 
function 

1R
( , )x y  second of function . The ter-

minal set 
( , )u x y

1
1M R  s allocated. 

Definition 1. In a task (1) it is possible   – comple-
tion of ( 0)   prosecutions from “boundary” situation 

( , )   , if exist function ( , , )u x y P  , Q  , 
( , )x y  , such that for any function  0 ( , )x y Q  , 
( , )x y 

0( ( , ),x y
 the solution of a task (1) where 0z x( , )t

, )x yu u  , 0 ( , )x y  , gets on a set 1I M  , 
at some ( , )x y  , 0 1( , ) : ( , )x y z x y    I M   where 

( 1I ,1)  . 
Decompose the Euclidean space of variables 2R

( , )x y  by the planes ix ih , ,  and 1/h r 0,1, , i
jy jl , 1/l  , 0,1, 2, ,j   into parallelepipeds 
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( , ) {( , ) : ( 1) , ( 1) }i j ix y ih x i h jl y j l        ,  and r
  being some natural numbers. The points ( , )i jx y

hl

 
belonging to a set  are the nodes of the grid   . 
Each node has its neighbors. If all these neighbor nodes 
also belong to the grid , then the node hl ( , )i jx y   

 is referred to as “internal”, otherwise, ( , )ih jl ( , )i jx y

2

1

( ) ,h
2 2( ) ,

/ ,

, , , ,, ,i j

 
is called the “boundary” node. The set of all boundary 
nodes is called as border of net area and is designated 
through . h

2
1 1

2
1 1

2 2
1 1

2 2
1

/ ( , ) ( ( , ) ( , ))/2 ( ) ,

/ ( , ) ( ( , ) ( , ))/2 ( ) ,

/ ( , ) ( ( , ) 2 ( , ) ( , ))/

/ ( , ) ( ( , ) 2 ( , ) ( , ))/

i j i j i j

i j i j i j

i j i j i j i j

i j i j i j i j

z x x y z x y z x y h O h

z y x y z x y z x y l O l

z x x y z x y z x y z x y

z y x y z x y z x y z x y l

 

 

 

 

    
    
    
    

,i jz

, 1, , 1, , , 1 , , 1( 2 )/ ( 2

0,1, , 1;    0,1, , 1.

i j i j i j i j i j i j i j i ja z z z h b z z z

i r j 
      

    

( , ):i j i j

Replace the internal nodes of the derivatives (1) dif-
ferential second-order accuracy of approximation ratios 
with formulas 

2 O
O l

ijf 

,i j i j

h

2 2) l

,

 

Substituting these ratios in (1), having rejected an error 
of approximation of derivatives, we will receive the dif-
ferential equations for unknown  

 (2) 

where the following designations of values of coeffi-
cients and the right part in a hub x y a

, ,,i j i j

b dc  
g f

, ( ( , ), ( , )),   ( , )i j i j i j i j hf f u x y x y x y

, for example are entered 

l

,i jz
,i jz

1, 0, 0, 0, 1, 0,

, 1, , 1, , ,

,1 ,0 ,0 ,1 ,0 ,0

, , 1 , , , 1 ,

( )/ ( )/2 ,   ( 0,1,

( )/ ( )/2 ,

( )/ ( )/2 ,   ( 0,1,2,

( )/ ( )/2

j j j j j j

r j r j r j r j r j r j

i i i i i i

i i i i i i

z z h z z j

z z h z z

z z l z z i

z z l z z     

 
 

 
 

 

 

    

   

    

   





2(r



2 1)

1)r



 

Ratios (2) contains except unknown  in internal 
nodes also unknown  on border of net area. For 
boundary nodes we will write down a ratio 

, ,

, 

)

(3) 

Thus, we will receive system of r 

,1iz

 
,i jz

,iz

 equa-
tions with the same number of unknown . 

Using boundary conditions (3), we will express , 
  through , ,0iz , 1iz 

,1 ,0 ,0 ,0 ,0 ,0

, , , , 1 ,

(2 )/(2 ) 2 (2

(2 )/(2 ) 2 (2

i i i i i

i i i i i

z l l z l l

z l l z l    

. Let's have 

, ).

i

i

)

l 

   
  

    
    

z z


   (4) 

Using these ratios, we will exclude in system (3) un-
known ,1i , ,i . If to enter designation 2/h l2

1,0 0 ,0 ,1 1,0 ,0

1, , 1 , , 1 1, ,

1, 1 , 2 , , 1 1, 1 ,

(2 2 ) ,
2(1 )

( 1,2, , 2),
(2 2 )

( 0,1, 2, , 1),

i i i i i

i j i j i j i j i j i j

i i i i i

z k z z z
z z z z z F

j
z z k z z

i r
    

  
  


  



   

     

     

, we will 
receive system 

1

i

i

F

F 

 
        
     
 



 

   (5) 

where 

2 2
,0 0 ,0 ,0 ,

2
, 1 , 1 , ,

2 /(2 );   

( 1,2, , 2);

2 (2 ).

i i i i ij i

i i i i

,jF h f l l F h f

j

F h f l l   

  


   

   
 

  
       (6) 

This system can shortly be written down in a look 

1 1 ,   ( 0,1, 2, , 1).i i i i iz Az z F i r             (7) 

where 

,0 ,1 , 1 ,0 ,1 , 1( , , , );    ( , , , )i i i i i i i iz z z z F F F F     ， 

,0

,

2(1 ) 0 0 0
2(1 ) 0 0

0 2(1 ) 0 0

0 0 0 2(1 )

i

i

i

k

A

k 

  
  

 

  

   
  
 

   
 
    





    


 (8) 

Boundary conditions (3) and (5) can be copied in a 
look 

1, 0, 0, 0, 0, 0,

0, 0, 0,

1, , , , , ,

, , ,

(2 )/2 (2 )/(2 )

       ( 0,1,2, , 1)

(2 )/(2 ) (2 )/(2 )

        ( 0,1, 2, , 1)

j j j j j j

j j j

r j r j r j r j r j r j

r j r j r j

z h h z h h

k z y j

z h h z h h

k z y j

   


  


 

    
   
    
   





，

，

  (9) 

where 

0, 0, 0, 0, 0, 0,

, , , , ,

(2 )/(2 )   (2 )/(2 )

(2 )/(2 )    (2 )/(2 ).

j j j j j j

r j r j r j r j r j r j

k h h y h h

k h h y h h ,

   
   

    
    

； ；

；
 (10) 

Having put 

0 0,0 0,1 0, 1 ,0 ,1 , 1

0,0

0,1
0

0, 1

,0

,1
1

, 1

( , , , );   ( , , , ).
0 0 0 0

0 0 0 0
;

0 0 0 0
0 0 0 0

0 0 0 0
,

0 0 0 0

r r r r

r

r

r

y y y y y y y y
k

k
X

k
k

k
X

k

 





 





 
 
 

 
 
 
 
 

 
 
 

 



  




  


(11) 

it is possible to write down systems (9) in such look: 

1 0 0 0

1 1

,
.r r

z X z y
z X z y

 
  r

               (12) 

Finally we have the following system of the equations: 

1 0 0 0

1 1

1 1

     ( 1, 2, , 1)i i i i i

r r r

z X z y
z Az z F i r

z X z y
 



 
    

 


，

。
     (13) 

Instead of game (13) we will consider more the gen-
eral game described by system of the equations 

0 0 0 1 0

1 1

1

( , )   1 1n n n n n n n n n

N N N N N

C z B z f
A z C z B z f u n N

A z C z f
 



 
      

  

，
， ，
，

 (14) 

where m
nz R , 0,n N , , ,n n nA C B  –  constant 

square matrixes, 
m m

,n nu   – operating parameters,  – nu
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prosecution parameter, n  – beanie parameter, n nu P  
pR , q

n nQ R   , n  and  – nonempty sets; nP nQ f  
– the set function displaying p qRR   in . Besides, in 

 the terminal set is 

mR
mR M  allocated. 
Definition 2. We shall say that from “boundary” situa-

tion 0( , )Nf f  it is possible to complete pursuit for  
steps if from any sequence 

N
1 2 1N, , ,     of the values of 

evasion controls it is possible to construct a sequence 
1 2 1  of values of the pursuit control values such 

that the solution 
, , , Nu u u

0 1 2,z  1{ , , , , }N Nz z z z  of the equation 

0 0

1 1

1

n n

N N

B
z 




 

0 1 0 
( , )   1 1n n n n n n n

N N N

C z z f
A z C z B f u

A z C z f


 
    



，
， ，
.

n N    (15) 

Gets on : iM z M  for some . Thus for finding of 
value 

i
nu  it is allowed to use values n  and nz . 

Note that the type of systems (14) is difference schemes 
for elliptic equations of second order with variable coef-
ficients in any field of any number of dimensions [3-14]. 

Solution of problem (14) will be sought in the form 

1 1 ,  1,  0,n n nz z n N1n 2, ,N            (16) 

where 1n 

m m
 – uncertain while a square matrix of the 

sizes , and 1n   – a vector of dimension m . 
From a formula (16) and the equations of system (14) for 

 there are recurrent ratios for calculation of 
matrixes 
1 1n N  

n  and vectors n . Really from a formula 
n nz(16) 1nz n     substituting it in (14) we will receive 

].n n



1

1

1 1

( ) , ),
1 1;

( ) ( , ;
( ) ( ) , )

n n n n n n n n n

n n n n n n n n

n n n n n n n n n

A z z B z f
n N

C A z z f u
z C A B z C A f A

  

 
1

n

n n

n

C

B

(

)
[ (

n

n

n n

u

A
u   





 


   


  
   


 



1( )
( )

1,2,

n n

n



2, ,
) n n

N
A

 

Equating now the right parts of the last and (16) equali-
ties we will receive 

1

1
1

,   1,
[ ( ,

, .

n n n

n n n n n n

C A B n
C A f u

n N

1;
],

 
 






 





   
  




 

Further from (16) and the equations (14) for 0,n N , 
there are the initial values 1 , 1  and , allowing 
beginning the account on recurrent ratios. From (14) and 
(16) for  we will have 

Nz

1 1 ,

0n
1 1

10 0z C0 0 0 0,   z C B f z z 1   

1 0C B

 

0

 

And, therefore 
1 1

10 0,   .C f     

In the same way for  we have n

N

N

( )N N N N N NA z C z f  

NA

 

N

 

or 
1( ) (N N N N Nz C f A ).     

Uniting, we will write out final formulas 

11
1 1 0( ) ,   1,2, , ,   n n n n nC A B n N C B0   
       (17) 

1
1

1
1 00

( ) ( ( , )
1, 2, , 1.   ,

n n n n n n n n nC A f u A
n N C f

),   







  
        (18) 

1 1 1

1

( , ),
1, 2, ,0,   

n n n n n n

N N

z z u
n N N z

  


  



 
           (19) 

It is clear, that if in game (17), (18), (19) nz M  that 
in game (14) too game comes to the end. Therefore fur-
ther instead of game (14) we will consider discrete game 
described by system of the equations (17), (18), (19). 

Before giving determination of stability of algorithm 
(17), (18), (19), we will provide some data from linear 
algebra. 

Let A – any square matrix  and ||m m ||mx  be norm 
of a vector in , then the norm A is defined by equal-
ity 

mR

0
|| || sup|| || /|| || .m m

x
A Ax x


  

For a case of Euclidean norms in  we have mR
|| ||A  , where   – maximum on the module own 
value of a matrix A A . 

Without the proof we will give the following known 
lemma (see [15]). 

Lemma 1. Let for some matrix norm the square matrix 
meet a condition || || 1A q  . Then there is a matrix 

1( )E A   and || 1) || 1/(1E A ( )q   . 
Let's say that the algorithm is steady if the assessment 

|| || 1j   for 1 j N   is carried out. 
Lemma 2. If jC  for 0 j N   – no degenerate ma-

trixes and jA  and jB  – nonzero matrixes for 1 j   
1N  also are satisfied conditions 

1 1
00

1 1

|| || 1,    || || 1,

|| || || || 1,   1 1.

N N

j j j j

C B C A

C A C B j N

 

 

 
    

 

And at least in one of inequalities the strict inequality 
takes place, there are return to the .j j jC A  matrix and 
|| || 1j  , here 1

1 00С B  , 
1

1 ( ) ,   1j j j j jC A B j N 1.  
       

Proof. 1
1 00|| || || || 1C B   , suppose, that || || 1j   also 

we will show 1|| || 1j   . After a course the proof of this 
fact we will receive existence of a matrix 1( )jj jC A  . 
Really from conditions of a lemma we will have 

1 1 1 1|| || || || || || || || 1 || || 1.j j j j j j j j j jC A C A C A C B           

As 1
j j jC A  square matrix that owing to a lemma 1 

there are return to 1
j j jE C A  and j j jC A  matrixes 

and 1|| )|| 11/|| ||( j j j j jC BE C A   . From here and from (17) 
we will receive 

1 1 1
1

1 1 1

|| || ||( ) ||

||( ) || || || 1.

j j j j j

j j j j j

E C A C B

E C A C B

j 


  


  

 
   

 

The proof of the lemma is complete. 
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3. Main Results 

Everywhere further it is supposed that 0 1M M M  , 
where 0M  – linear subspace , 1

mR M  – a subset a 
subspace,  – orthogonal complement of 0L M  in . 
Denote  we will designate a matrix of orthogonal 
design from  on . 

nR


mR L
Let , (0) {0}W 

1

1
0

1 1

( ) ( , )

( ) ( ),   1 .

N k i N k i

k

N k N k i N k i N k i N k i
i Q

W k P

W k W k k N


   

   



         
 



   

  

 (20) 

Theorem 1. Let N  be the smallest of the numbers k, 
such that 

1 ( ).N k N k N Nz W k1                (21) 

Then from “boundary” situation 0( , )Nf f  it is possible 
to complete pursuit for N  steps.  

Let now , 2 1(0)W M

1 1

1 1

2 2 1 1

2 2 1 1 1

(1) [ (0) ( , )],

( ) [ ( 1) ( , )]
N k N k

N N

N k N k N k
Q

N k N k N N N N
Q

W W P

W k W k P




 

    
   

 

    


     


 

  


 1

 

(22) 

Theorem 2. If N  be smallest of those numbers , 
for each of which takes place inclusion 

k

( )1 z W kN k N k N N 2            (23) 

that of “boundary” situation 0( , )Nf f  it is possible to 
complete pursuit for N  steps. 

Let 

 1

0 1 1
0

( ) , , , : 0, 1
k

k k i
i

     





    i

],

 

and 


1

1 1
0

3 1 3
( )

  ( ( ))

( , )

 0 ,
(0) ,  ( ) ( ( )),  0 .

N k i M k i

k

k

k

i N k N k i N k i N k i N k i
i Q

k

W

M P

k N
W M W k W k N







    



   



         
 





   

 
    





 

(24) 

Theorem 3. If 1M  – a convex set and N  be small-
est of those numbers . For each of which inclusion 
takes place 

k

1 ( ).N k N k N Nz W k3                (25) 

That of “boundary” situation 0( , )Nf f  it is possible to 
complete pursuit for N  steps.  

It is easy to be convinced [15] that the solution of  
differential task (2) meets to the solution 

,i jz
z  of an initial 

task (1), the following assessment of speed of conver-
gence takes place 

2
, 1 2||( ) || ,hlhl i jz z K h K l

2             (26) 

where  – values of the exact decision a task (1) in 
grid functions, 

( )hlz
hl  – spaces of net functions, || || hl  – 

is its norm and, 1K  and 2K  constants. 
Theorem 4. Let in an inequality (26) 2 2

1 2K h K l   , 
and in game (13) from a “boundary” situation 0( , )Nf f   

0( , )Ny y 

/ (z x

completion of prosecution that is definitions 2 
be possible. Then in game (1) from “boundary” situation 

, ) ( ,y z x )y      ,  it is possible to 
complete pursuit that are definitions 1. 

( , )x y 

4. Proof of Theorem 

Proof of Theorem 1. Let 1 2 1, , , N    , i Qi , 
1 i N 1    – any sequence. Instead of inclusion (21) we 
will consider other inclusion equivalent to it 

1 1

1 1

1 1 1

( 1)
( ,

N N

N k N k N N

N k N k N N N N
Q

z W k
P


1)

  
    

 

  

     


  
 


  

Means, exists 1Na   

1 1

1 1 1 ( , )
N N

N N k N k N N N
Q

a P


1 1 .N    
 

     


    

Such that 

1 1( 1) .N k N k N N Nz W k a 1              (27) 

Now control of the pursuing player 1Nu  , the relevant 
control of the escaping player 1N  , we will construct as 
the solution of the following control 

1 1 1 1( , )N k N k N N N N Nu a 1.             

It is clear, that the equation has the decision. From 
here owing to (27) we have 

1

1 1 1( 1) ( , )
N k N k N N

N k N k N N N N

z
W k u
  

    
  

1 1     


  


  

We write down this inclusion in other look. 

1 1 1 1 1[ ( , )] ( 1)N k N k N N N N N Nz u W k .                (28) 

As a result from equalities (18) and (28) we will re-
ceive 

1 1 1 1( 1)N k N k N Nz W k               (29) 

Done above a reasoning allow us to construct on the 
set control 1N   providing inclusion (29). If now the 
control 2N   becomes known that, we above can receive 
in the stated way control 1Nu   providing inclusion 

1 2 2 1( 2).N k N k N Nz W k           

Repeating this process, further we can construct step 
by step control iu , proceeding from becoming known 
controls i , therefore, that in any step inclusion takes 
place 

1 1 1(0) .N kz W     

It means that 
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1N kz     

As we set out to prove. 
Proof of Theorem 2. Let 1 2 1, , , N    , i iQ , 

 – any sequence. For concrete 1 i N  1 1N   owing to 
(22) and (23) we will receive inclusion 

1 2

1 1 1

( 1)
( , )

N k N k N N

N k N k N N N N

z W k
P

  
1    

  

     

 






      (30) 

Now as 1Nu   we take that element from 1NP   for 
which inclusion (30) remained. Then we will receive 

1 2

1 1 1

( 1)
( , )

N k N k N N

N k N k N N N N

z W k
u

  
1    

  

     

 






 

From this it follows that 

1 1 1 1 2[ ( , )] (N k N k N N N N N Nz u W k 1).                

And therefore, owing to (19) we have 

1 1 1 2( 1).N k N k N Nz W k           

If now the control 1N   becomes the stated way 
known that we above us can construct control 1Nu   pro-
viding inclusion 

1 2 2 2( 2).N k N k N Nz W k         



 

Further arguing similarly in any step we will receive 

1 2 1(0) ,N kz W     

that is 

1 .N kz     

The theorem is proved completely. 
Proof of Theorem 3. Instead of inclusion (25) mean-

ing (24) we will consider inclusion equivalent to it 

1 ( ( )).N k N k N Nz W          

Existence  1

0 1 1
0

( ) , , , , 0, 1
k

k i i
i

     





      follows 

from (24). From here follows 

1 1

2

1
0

1 1

1 1 1 1 1

[ ( ,
[ ( , )

N k i N k i

N N

k

N k N k N N
i Q

i N k N k i N k i N k i N k i

k N k N N N N
Q

z

P
P





  

    
    

   

 



  
 

         

    


 

  
   

 



)]

].
  (31) 

Let now 1 2 1, , , N    , i iQ ,  – any se-
quence. Owing to (31) exists such  that 

1 i N  
1Na 

1

1 1

1 1 1 1 1

2

1
0

1 1

[

[ (

N N

N k i N k i

N k N k N N N
Q

k

N k N k N N
i Q

i N k N k i N k i N k i N k i N

P

z

P a





    

  

    

 

   

    




  
 

          

   

 

   



 


1

1

( , )],

, )]

N 

 (32) 

Therefore, controls 1Nu   we will construct as the so-
lution of the following equation 

1 1 1 1 1 1 1, 1 1( , ) ,  .k N k N N N N N km u a m               

Further owing to (32) we have 

2

1
0

1 1

1 1 1 1 1, 1

[ (
( , ) .

N k i N k i

k

N k N k N N
i Q

i N k N k i N k i N k i N k i

N k N N N N k k

z

P
u m


  

    
    

   



  
 

         

     

 

  
 

 



, )]  

It is equivalent to the following 

1 1 1 1 1 1, 1

2

1 1
0

[ ( , )]

[ (
N k i N k i

N k N k N N N N N N k k

k

i N k N k i N k i N k i N k i
Qi

z u m

P


      
    

   

       


, )         


  
    


   

Therefore owing to (32) we have 

1 1 1 1 1, 1

2

1 1
0

[ (
N k i N k i

N k N k N N k k

k

i N k N k i N k i N k i N k i
Qi

z m

P


   
    

   

      


         


 
    


  , )].

 

In the same way, if the control 2N   becomes the 
stated way known that we above us can construct con-
trols 2Nu   providing inclusion 

3

1 2 2 1 1 2 2
0

1 1[ ( ,
N k i N k i

k

N k N k N N k k k k
Qi

i N k N k i N k i N k i N k i

z m m

P


    

     )]
   



        


         

   

  

 


 

etc. Thus, we will receive 
3

1 2 2 1 1 2 2
0

1 1[ ( ,
N k i N k i

k

N k N k N N k k k k
Qi

i N k N k i N k i N k i N k i

z m m

P


    

     )]
   



        


         

   

  

 


 

from here we receive 

1 .N kz     

The theorem is proved completely. 
Proof of Theorem 4. Let in game (13) one be able to 

complete the pursuit from “boundary” situation  0( , )Nf f
0( , )Ny y    in  steps. Then, it follows from Defini-

tion 2 that from any sequence 
N

0 1, ,..., 1, ,N k Q      
0 k N 1,    of the evasion control it is possible to con-
struct a sequence 0 1 1, ,..., , ,N ku u u u P    of 
pursuit control such that the solution 

0 1k N   ,
0 1 1( , ,..., , )N Nz z z z  

of the equation 1 0 0z X z y0  , , 1 1n n nz z F    1 nn nz A   
1N  , 1 1zNz X N Ny  , for some  hits d N : dM z  

M . Let now in game (2) ( , ) , ( , )x y Q x y   
2( )

, be 
an arbitrary control of an evader from the class L  . 
With the knowledge of the evader control ( , )x y  , it 
is possible to determine ,i k  as the values of this func-
tion at the node points of the grid , that is, hl

1, 2, 1,( , ,..., ).k k k k r k        

Whence it follows that in virtue of Theorem 4 we can 
construct the pursuer control in game (13) providing 
completion of pursuit 

1, 2, 1,( , ,..., ).k k k k r ku u u u u    

Now in game (2) we construct the pursuer control 
( , )u u x y  as follows: , ,( , ) { : ( 1) ,i k i k iu x y u u ih x i h      

0,1,..., 1, ( 1) , 0,1,..., 1}i r kl y k l k       
u P

. 
Obviously,   and 2( , ) ( )u x y L  . By substituting 

( , )x y   and ( , )yu u x  in (2), we obtain a differen-

Copyright © 2013 SciRes.                                                                                AJCM 



M. Sh. MAMATOV  ET  AL. 

Copyright © 2013 SciRes.                                                                                AJCM 

61

[2] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. 
Ural’tseva, “Lineinye I Kvazilineinye Uravneniya 
Parabolicheskogo Tipa,” (Linear and Quasi linear Func-
tions of Parabolic Type), Moscow, Nauka, 1967. 

tial equation. Similarly, by substituting ,i k  and ,i ku  in 
(3), we obtain a grid equation approximating equation 
(2). 

Let ( )hlz  be the value of the exact solution corre-
sponding to the controls ( , )x y   and ( , )u u x y  of 
problem (2) at the nodes of the grid ,,hl i kz  be the solu-
tion corresponding to the controls ,i k  and ,i ku  of the 
difference problem (3). Then, we obtain from (13) and 
the condition of Theorem 4 that 

[3] V. A. Il’in, “Boundary Control of String Oscillations at 
One End with Other End Fixed, Provided that Finite En-
ergy Exists,” Dokl. Ross. Akad. Nauk, Vol. 378, No. 6, 
2001, pp. 743-747.  

[4] V. A. Il’in and V. V. Tikhomirov, “Wave Equation with 
Boundary Control at Two Ends and Problem of Complate 
Oscillation Damping ,” Diff. Uravn., Vol. 35, No. 5, 1999, 
pp. 692-704. 

2
, 1 2( ) .

hl
hl i kz z K l K h 


     

From this fact and ,i kz M 1 , we obtain ,( ) ,hl i kz z S   
,( ) , ( )hl i k hlz S z z S M    

[5] Yu. S. Osipov and S. P. Okhezin, “On the Theory of Dif-
ferential Games in Parabolic Systems,” Dokl. Akad. Nauk 
SSSR, Vol. 226, No. 6, 1976, pp. 1267-1270.  

1

n

, which proves the theorem. 

5. Conclusions [6] F. L. Chernous’ko, “Bounded Controls in Distrib-
uted-parameter Systems,” Prikl. Mat. Mekh., Vol. 56, No. 
5, 1992, pp. 810-826. Thus, to solve the game problem of pursuit in the form (1) 

we pass to the discrete game (13) or (14), and Theorems 
1-3 establish the sufficient condition for such problems. 
Theorem 4 establishes the sufficient conditions for solv-
ing the problem of pursuit (1). Here, the difference 

 (see Section 3) plays the main part in the solu-
tion of problem and implies that the solutions of the grid 
equation (2) are stable. 

,( )hl i jz z

[7] N. Satimov and M. Sh. Mamatov, “On a Class of Linear 
Differential and Discrete Games between Groups of Pur-
suers and Evaders,” Diff. Uravn., Vol. 26, No. 9, 1990, pp. 
1541-1551. 

[8] N. Satimov and M. Tukhtasinov, “On some Game Prob-
lems in the Distributed Controlled Systems,” Prikl. Mat. 
Mekh., Vol. 69, No. 6, 2005, pp. 997-1003.  

The problem of stability of the grid equation (2) lies in 
determining the conditions under which the numerical 
error  tends to zero with growing j uni-
formly in all , or at least remains bounded. 

, ( )i j hl i jp z z 
, 0i  

,

i

[9] N. Satimov and M. Tukhtasinov, “On some Game Prob-
lems in Controlled First-order Evolutionary Equations,” 
Diff. Uravn., Vol. 41, No. 8, 2005, pp. 1114 -1121. 

[10] M. Sh. Mamatov, “On the Theory of Differential Pursuit 
Games in Distributed Parameter Systems,” Automatic 
Control and Computer Sciences, Vol. 43, No. 1, 2009, pp. 
1-8. doi:10.3103/S0146411609010015 

Equation (2) is called stable if the round off errors 
generated in the course of calculations have tendency to 
decrease or at least not to increase. Otherwise, the accu-
mulated errors may reach a value such that the numerical 
solution  has nothing in common with the exact 
solution of the grid problem (2). It goes without saying 
that such unstable grid equations cannot be used for nu-
merical solution of the differential games. 

( )hlz

[11] M. Sh. Mamatov, “About Application of a Method of 
Final Differences to the Decision a Prosecution Problem 
in Systems with the Distributed Parameters,” Automation 
and Remote Control, Vol. 70, No. 8, 2009, pp. 1376-1384. 
doi:10.1134/S0005117909080104 

[12] M. Tukhtasinov and M. Sh. Mamatov, “On Pursuit Prob-
lems in Controlled Distributed Systems,” Mathematical 
notes, Vol. 84, No. 2, 2008, pp. 273-280. 

Theorems 1-4 are easily generalized to a wider class of 
differential games, for example, when 

2

1 2 1 2 1 22
1

( , ,..., ) ( ( , ,..., ), ( , ,..., ))
n

n n
za x x x f u x x x x x x

x





  n  
[13] M. Tukhtasinov and M. Sh. Mamatov, “About Transition 

Problems in Operated Systems,” Diff. Uravn., Vol. 45, 
No.3, 2009, pp. 1-6. 

with discontinuous coefficients. [14] M. Sh. Mamatov and M. Tukhtasinov, “Pursuit Problem 
in Distributed Control Systems,” Cybernetics and Systems 
Analysis, Vol. 45, No. 2, 2009, pp. 297-302. 
doi:10.1007/s10559-009-9100-x REFERENCES 

[1] O. A. Ladyzhenskaya, “Kraevye Zadachi Mate-
maticheskoi Fiziki,” (Boundary Problems of Mathemati-
cal Physics), Moscow, Nauka, 1973. 

[15] G. I. Marchuk, “Metody Vychislitel’noi MateMatiki,” 
(Methods of computational Mathematics), Moscow, 
Nauka, 1989. 

 

http://dx.doi.org/10.3103/S0146411609010015
http://dx.doi.org/10.1134/S0005117909080104
http://dx.doi.org/10.1007/s10559-009-9100-x

