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ABSTRACT 

In my paper [1], we aimed to determine the best possible range of   such that the modified Heinz’s inequality 

( ) (A A A A B A )         holds for any bounded linear operators A  and  on a Hilbert space  such as 

 and for any given 

B 

some 0A B I       and   such as 0   and 0  . But the counter-examples pre-

pared in [1] and also in [2] were not sufficient and, in this paper, we shall constitute the sufficient counter-examples 
which will satisfy all the lacking parts. 
 
Keywords: Heinz’s Inequality 

By the same way as in the proof of Theorem ([1]), we 
have the following.  
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If   A A A A B A         for any real numbers 

,   and   such as 0   and 0  , then we have 

the following inequality (1). 
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Proof Since the sufficiency of our range for the modi-
fied Heinz’s inequality is already proved in [1], we have 
only to constitute counter-examples of A  and  in 
the outside of our ranges. 
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