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ABSTRACT 

In the present paper, we answer the question: for 0 < α < 1 fixed, what are the greatest value  p   and the least value 

 q   such that the inequality        1, , ,p ,qJ a b A a b G a b J a b  

 ,p

 holds for all  with ? where 

for , the one-parameter mean 

, 0a b  a b

p R J a b , arithmetic mean  ,A a b

 
 

 and geometric mean  of two posi-

tive real numbers  and  are defined by 

 ,G a b

a b
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1. Introduction 

For , the one-parameter mean p R  ,pJ a b , arithme-
tic mean  , A a b  and geometric mean  ,G a b  of  
two positive real numbers  and  are defined by a b
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  and  ,G a b ab , respectively. 

There has been some literature on the one-parameter 
mean values  ,p J a b , see [1-6]. It is well-known that 
the one-parameter mean  ,pJ a b  is continuous and 

strictly increases with respect to  for fixed 
 with 

p R
,a b  0 a b . Many means are special cases of 

the one-parameter mean, for example: 

  1 ,
2

a b
J a b

 

,A a b


  , the arithmetic mean, 

 , ,
3

a ab b
He a b

 
 1/2J a b , the Heronian mean, 

   1 2 , ,J a b ab G a b   , the geometric mean, and  

  2

2
,

ab ,J a b H a b
a b  


, the harmonic mean. 

In [1], Gao and Niu found the greatest values  
and the least values  such that the inequalities 

1,p s

2,q s

         1, , , ,p q ,J a b A a b G a b H J a b    a b    

and 

         
1 2

1
,1 ,1, , , ,s sG a b A a b G a b H G a b    ,

0

a b    

hold for all  with , where ,a b  a b  0,1   , 
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and  
 
 

 1 1

,1 ,

s
s s

s

a b
G a b

a b


 
 

  
, as the Gini mean. 

In [2], Cheune and Qi proved the logarithmic con-
vexiity of the one-parameter mean values  ,p J a b


 and 

presented the monotonicity of   J r J r  for r R . 
In [3], Wang, Qiu and Chu obtained the greatest value 

1  and the least value such that the double inequality r 2r  

         
1

, , 1 ,r 2
,rJ a b A a b H a b J a b      

holds for all  with, 0a b   a b . 
In [4], Hu, T  Chu prese d u and nte the greatest value 

an
1r  

d the least value 2r  such that the double inequality 
     

1 2
, , ,r rJ a b T a b J a b   holds for all , 0a b   

with a b , where 

 
 
 

2
,

2arctan

ab
T a b

a b

a b


 
   

 

denotes the first Seiffert mean. 
he greatest value  and 

th

,q

In [5], Long and Chu found t p
e least value q  such that the inequality 

       , , 1 ,p  J a b A a b H a b    J a b   

holds for all  with, 0a b   a b . 
In [6], the auth s estab  Sor lished chur-convexities of 

tw
k

purpose of this paper is to answer the question: for 

o types of one-parameter mean values in n  variables, 
and obtained Schur-convexities of some well- nown func- 
tions. 

The 
0 1   fixed, what are the greatest value  p   and 

alue  qthe least v   such that the inequality 

    1, , , , p q J a b a b G a b J a b A   

holds for all  with, 0a b   a b ? 

2. A Preliminary Lemma 

m of this paper, we need 

t > 1, one has 

In order to prove the main theore
the following lemma. 

Lemma 2.1. For all 
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.  (4) 

Simple calculations lead to 
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4 1 log 3 1 , lim 0
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(2) follows from (3)-(7) an

3. Main Result 

is paper is the following theorem. 

d the fact 

 
1

lim 1
t

m t


 . 

The main result of th
Theorem 3.1. Let 0 1  . Then for any ,a b 

w
0  

ith a b , we have 

       1
1 3 1

2 2

, , , .,J a b A a b G a b J a b
 


    (8) 

Moreover, the bounds  1

2

,J a b   and  3 1

2

,J a b    

ar
 no loss of generality to assume that 

Le

e optimal. 
Proof. It is a b . 

t 2 1
a

t
b

  , 
1 3 1

,p
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 1
1

lim 0,
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h x
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where 

         (20) 

     2
3 42 1 ph x p p x h x          (18) 

      4 2 1 1h x p x p     1     (19) 

 4
1

lim 2 3 1,
x

h x p 


    

    4 2 1 .h x p               (21) 

We now distinguish between two cases. 

Case 1. 
3 1

2
p

 
 . We first consider the case 

1

3
   since in this case the one-parameter mean  

 ,pJ a b  has different expression from others. The re-
sult 

     
1 2
3 3

0,1 ,1 ,1A t G t J t  

follows from Lemma 2.1 since 

       
1 2
3 3 3

0,1 ,1 ,1 ,1 1,A t G t J t m t   

In the following we assume 
1

3
  . 

From (21) we see that   0x 
g 

0  for all 

4h
implies    is strictly increasin

 for , which 
for . From 

(20) we at plies 
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x 
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4h x
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 4h x  1x 
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result together with (17) implies  for   3 0h x 
1
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3 

 
 and      0h x 3 r  fo

1 
,1
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. The same   

reasoning applies to     2 1 1, ,h x h x h x s well, 
15), (14), (12), (11), (9) and (8 w  
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a
and using ( no
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3

 for 
 1g
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. (8) implies 

   1 0f t   for all 1t  . Thus  

 1f t  is strictly increasing for 1t  , which together 
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implies rig nequality
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This implies 
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