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ABSTRACT 

Numerical solutions of singular Fredholm integral equations of the second kind are solved by using Coiflet interpolation 
method. Error analysis of the method is obtained and examples are presented. It turns out that our method provides bet- 
ter accuracy than other methods. 
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1. Introduction 

In the early 1900s, Ivar Fredholm solved the integral 
equations named after him, 

       , d
b

a

y x g x k x t y t t   ,  

where the function  g x and continuous kernel  ,k x t  
are given, and the unknown function y(x) is to be deter- 
mined. A numerical method of solving this equation has 
been shown in [1]. In this study, we discuss the numeri- 
cal solution of singular Fredholm integral equation of the 
second kind which is defined as follows: 

       , d

           1 0,  ,

b

a
u x f x k x t x t u t t

a x b





  

    
 ,      (1) 

where the functions  f x  and  are given, the 
numerical solution for Equation (1) is to provide an ap- 
proximation for the unknown function . In fact, 
Equation (1) is known as an Abel’s integral equation 
which is defined by Niels Henrik Abel. There are many 
approaches to find a numerical solution of the Abel’s 
equation [2], such as Gauss-Jacobi quadrature rule which 
was proposed by Fettis (1964), orthogonal polynomials 
expansion by Kosarev (1973), the Chebyshev polynomi- 
als of the first kind by Piessens and Verbaeten (1973) 
and Piessens (2000), etc. Recently, K. Maleknejad, M. 
Nosrati and E. Najafi solved the equation by using wave- 
let Galerkin method [3]. Here we used Coiflets to find a 
numerical solution of Equation (1).  

 ,k x t

 u x

The Coiflets are discussed in the next section briefly. 
In Section 3, we solve Abel’s Equation (1) by using 
Coiflets. The error analysis is discussed in Section 4. 
Finally, we apply our method for two singular equations 
in the examples and compare our method with other me- 
thod [3]. We obtain numerical solutions which have achie- 
ved better accuracy. 

2. Coiflets and Wavelet Interpolation 

In the context of wavelet theory, we usually deal with 
wavelets and scaling functions [4]. The wavelet function 
is defined by building a sequence upon scaling functions 
generated by  x . Choosing some suitable sequence, 
 ,pa p Z , we obtain the following dilation equation, 

     ,2 j
p p

p p
j px a x p a      x  

A nested of subspaces  ,jV j Z  of  2L R  is de-
fined such that, 

  , ,j j p p
V Span x j Z   

which means that for any function   jf x V  it can be 
expressed as: 

  ,p j p
p

f x x    

If the basis functions of a subspace are orthogonal at 
the same level, then a given function   jf x V  can be 
expressed as follows: 
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   , , ,, ,j p j p j p
p

f x f x f     

where 

   , ,, j p j p df f x x x 



   

If the nested sequence of the subspaces   
has the following properties then it is called a multireso- 
lution analysis (MRA): 

,jV j Z

1) 1j jV V   

2)   0j
j Z

V




3)  2
j

j Z

V L R


  

4)     12n nf x V f x V     

5) there exists a function 0V   such that  
  , x k k Z    is an orthogonal basis forV . 0

The wavelet function is constructed in the orthogonal 
complement of each subspace jV  in 1jV   which is 
denoted by jW . This means 1j j   jWV V . Since 
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0, as

, asj

j
V

L R j
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we have 1j jV V W   j  and  2
j

j

L R W



  . The set 

 forms a basis for )}({ , xpj 2() pxj  jW , and 

can be obtained from the following equation: 

   , ,  for some .p j p
p

bx b x    

The orthogonally of jW  on jV  means that any 
member of jV  is orthogonal to the members of jW , 
that is, 

   , , , , ,, dj p j k j p j k p kx x x       

In fact, scaling function and wavelet have the follow- 
ing properties: 
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where  0, N  is the compact support of  x  and 
 x  
In what follows, we will recall a scaling function in- 

terpolation theorem and the definition of Coiflets. As an 
application, we will use Coiflets and this interpolation 
formula to find numerical solutions of singular integral 
equations. 

Definition 2.1. The Coifman wavelet system (Coiflet) 
of order L is an orthogonal multiresolution wavelet sys- 
tem with 

 d 0, for 1,2, ,k 1x x x k L      

 d 0, for 0,1, ,k 1x x x k L      

Lin and Zhou proved the following interpolation theo- 
rem in R2 and : nR

Theorem 2.1. [5] Assume the function    kx C  , 
where   is a bounded open set in ,  Let, 
for 

 2k N 
j Z , 

 
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1
, ,
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p q Z

f x y

p c q c
f x y 



  
,x y  

 
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where the index 

       , ,q, sup supj p jp q         

and sup denotes the support of the function. 
In addition the moments lM  satisfy 

 d , 1,2, ,jM x x x c l Nl l 1      

Then 

 
 

2

1
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2

N
Nj

jL
f f C f



 

    
 

       (2) 

where  is a constant depending only on  and dia- 
meter of 

C N
 ; 

 
   , ., 0,1, ,max , .

N
N

x y m N m N m

f
f x y

x y  




   

3. Solving Singular Fredholm Integral  
Equation Using Coiflets 

This section provides a method of finding numerical so- 
lution of Equation (1). In what follows, we assume that 
     , , ,x t a b a b   and  ,k x t

 u x

 satisfies Lipschitz 
condition. The unknown function  in Equation (1) 
can be expressed in term of scaling functions in the sub- 
spacev, where the function  is approximated by 

 u x

 u x  such that; 

  ,p j p
p

u x a x                (3) 

To find the numerical solution we need to determinate 
the unknowns pa  in Equation (3). 

By substituting Equation (3) in (1) we have the fol- 
lowing equation, 

       1

, ,0
, dp j p p j p

p p

a x k x t x t a t t f x
      

which is equivalent to the equation, 

        1

, ,0
, dp j p j p

p

a x k x t x t t t f
     x     

(4) 
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By providing sufficient collocation points in  for 
Equation (4) we will have a linear system of linear equa- 
tions with unknown 

[0,1]

pa . In fact, the linear system can be 
written as the following matrix equation, 

A a f  

where ,  1 2, , , na a a a
   , ,   1 2 , nf x f x  f xf  and 

     
     

     

1 1 2 1

1 2 2 2 2

1 2

n n

n

n n n n

A x A x A x

A x A x A x
A

A x A x A x

 
 
   
 
  




   


 

is obtained from the left hand side of Equation (4). Sub- 
sequently, we substitute the solutions of ap into Equation 
(3), and obtain an approximate solution of the integral 
equation. 

4. Error Analysis 

The integral Equation (1) can be rewritten as follows [3]. 

       1 1

0 0
, d ,k x t x t u t t H x t u t t


   d     (5) 

where 

   ,     
,

0                        

k x t x t x t
H x t

x t

  




d

 

Then the integral Equation (1) is equivalent to the fol- 
lowing equation, 

       1

0
,u x f x H x t u t t           (6) 

The next theorem shows the convergence rate of our 
method for solving Equation (1). Without loss of gener- 
ality, we suppose that the integral equation is defined on 
the interval  0,1 . 

Theorem 4.1. In Equation (1), suppose that the func-
tion k satisfies the Lipchitz condition. Moreover,  f x  
is continuous on the interval  0,1 . For , j Z

   ,
j

p j p
p

u x a x              (7) 

is an approximate solution of the unknown function in 
Equation (1) with coefficients obtained in Section 3. 
Then 

      1
,

2

j
je x u x u x c

     
 

 

for some constant c. 
Proof: We prove in two cases, one at singularities 

(case 1) and the other at the points x t  (case 2). 
Case 1. In Equation (1) when x t , the function 

 satisfies the Lipchitz condition and the function 
 is continuous, then Equation (1) is equivalent to 

Equation (6), then the function 

 ,k x t
 u x

   u x f x  which 
gives us the exact solution. 

Case 2. In this case we don’t have singularities, and 
Equation (1) is equivalent to Equation (6) and  

   , ,H x t k x t x t


  . Subtracting Equation (7) from 
(6) and applying the norm, we have 
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H x t a t, d
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





 

 





  t u t t

 
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 

 
  
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   (8) 

The unknown function  can be interpolated us- 
ing Coiflet such that 

 u t

     , .
2

j
j pj

p

p
u t u t u t    

 
        (9) 

If we add and subtract Equation (9) to (8), then Equa- 
tion (8) becomes: 

 

 

1

1 ,0

1

,0

( ) d
2

d
2

j pj
p

p j pj
p
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p
u a t t





         
          





   (10) 

Notice that 
2 pj

p

p
u
 

a 
 

  is finite, then let  

2 2 pj
p

p
c u a

   
 

  

and by using Equation (2), 

 
 
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1

0

1

2

N
Nj

jL
u u c u



 

    
 

 

Equation (10) becomes 

 
1

1 0 2

1 1

2 2

1

2

N j j
Ne c c u c c

                    
  

for some constant c which is absorbed from the above 
inequality. 

5. Numerical Examples 

In the following examples we are solving singular Fred- 
holm integral equation of the second kind by using Coi- 
flet of order 5 and calculate errors between the exact and 
numerical solutions at level j = −10. The errors are 
shown in Table 1. 

Example 1. 
We solve the singular integral equation 
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with the exact solution   3 4
2 2 1x x . Table 1. The absolute error for Examples 1 and 2. 

x  Error for Example 1 Error for Example 2 

0.1 3.46054E-10 1.98116E-7 

0.2 3.01383E-11 1.16379E-7 

0.3 1.95466E-10 9.29447E-8 

0.4 3.30836E-10 8.37863E-8 

0.5 3.76019E-10 6.1996E-8 

0.6 3.30948E-10 8.37863E-8 

0.7 1.95553E-10 9.29447E-8 

0.8 3.01101E-11 1.16379E-7 

0.9 3.46045E-10 1.98116E-7 

6. Conclusion  

We apply our method to the same examples shown in [3]. 
Table 1 indicates that our solutions have better accuracy 
than the solutions obtained in [3]. Our method is robust 
and efficient. There are other questions such as finding 
solutions at different levels of subspaces and solving 
nonlinear integral equations which will be our next re- 
search projects. 
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