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Abstract 
 
A refined finite-difference approach is presented to solve the thermoelastic problem of functionally graded 
cylinders. Material properties of the present cylinder are assumed to be graded in the radial direction accord-
ing to a power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The 
governing second-order differential equations are derived from the motion and the heat-conduction equations. 
Numerical results for dimensionless temperature, radial displacement, mechanical stresses and electromag-
netic stress are distributed along the radial directions. The effects of time parameter and the functionally 
graded coefficient are investigated. 
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1. Introduction 
 
Magneto-thermoelastic functionally graded material is a 
kind of magneto-thermoelastic material with material 
composition and properties varying continuously along 
certain directions. It is the composite material intention-
ally designed so that they possess desirable properties for 
some specific applications. The advantage of this new 
kind of materials can improve the reliability of life span 
of magnetic devices. Recently, there has been growing 
interest in materials deliberately fabricated so that their 
electric, magnetic, thermal and mechanical properties 
vary continuously in space on the macroscopic scale. 
This research subject is so new that only a few results 
can be found in the literatures. 

In recent years the theory of magneto -thermo -elasticity 
that deals with the interactions among strain, temperature 
and electromagnetic fields has drawn the attention of 
many researchers. This theory is extensive uses in diverse 
field such as geophysics for understanding the effect of 
the Earth’s magnetic field on seismic waves, damping of 
acoustic waves in a magnetic field, and emissions of 
electromagnetic radiations from nuclear devices. It is 
also developed a highly sensitive superconducting mag-
netometer, electrical power engineering and optics. 

In the field of magneto-elasticity or magneto-thermo- 
elasticity, many studies have been conducted on an ana-
lytical treatment of an interaction between elastic, elec-

tromagnetic, and temperature fields (e.g., Paria [1], Wang 
et al. [2], Wang and Dai [3], Wang and Dong [4], Ba-
nerjee and Roychoudhuri [5]). 

The magneto-thermoelastic problem of functionally 
graded material (FGM) hollow structures subjected to 
mechanical loads is considered by Dai and Fu [6]. Hou 
and Leung [7] analyzed the plane strain dynamic prob-
lem of a magneto -electro -elastic hollow cylinder by virtue 
of the separation of variables, orthogonal expansion tech- 
nique and the interpolation method. Buchanan [8] consi-
dered the free vibration problem of an infinite magne-
to-electro-elastic cylinder. The frequency behaviour of 
clamped-clamped magneto -electro -elastic cylindrical shells 
is analysed by Annigeri et al. [9] using the semi-ana- 
lytical finite element approach. Hou et al. [10] studied 
the transient responses of a special non-homogeneous 
magneto-electro-elastic hollow cylinder for axisymme- 
tric plane strain problem. The magnetother-moelastic 
problem in non-homogeneous isotropic cylinder in a 
primary magnetic field is discussed by Abd-El-Salam et 
al. [11]. The dynamic and quasi-static behaviors of mag-
neto -thermo -elastic stresses in a conducting hollow circu-
lar cylinder subjected to an arbitrary variation of mag-
netic field are investigated by Higuchi et al. [12]. 

Bhangale and Ganesan [13] studied the free vibration 
on FGM magneto-electro-elastic cylindrical shells using 
a series solution. Kong et al. [14] presented an analytical 
method to investigate thermo -magneto-elastic stresses 
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and perturbation of the magnetic field vector in a con-
ducting non-homogeneous hollow cylinder under thermal 
shock. Wang and Dai [15] presented magneto-thermo- 
dynamic stresses and perturbation of magnetic field vec-
tor in an orthotropic thermoelastic cylinder. Dai and 
Wang [16] presented an analytical solution for magne-
to-thermo-electro-elastic problems of a piezoelectric hol- 
low cylinder placed in an axial magnetic field subjected 
to arbitrary thermal shock, mechanical load and transient 
electric excitation. 

The objective of this investigation is to generate dis-
placement, stresses, temperature, and magnetic field in a 
FGM annular cylinder. Material properties of the present 
cylinder are assumed to be graded in the radial direction 
according to a power-law distribution in terms of the 
volume fractions of the metal and ceramic constituents. 
The governing motion and the heat-conduction equations 
are obtained in conservation forms and solved numeri-
cally using finite difference method. A refined finite- 
difference approach is presented to solve the present 
problem. Numerical results for the variation of tempera-
ture, displacement and stresses are presented for a metal- 
ceramic FG cylinder. To make the study reasonably, 
temperature, displacement, and stresses are given for 
different homogenization schemes and exponents in the 
power-law that describes along-the-thickness variation of 
the constituents. The effects of many parameters are in-

vestigated. 
 
2. Mathematical Model 
 
Let us consider an annular cylinder of outer radius r = b, 
inner radius r = a, and made of a functionally graded 
material. The cylindrical coordinates system  , ,r z  
for the axially symmetric problem is used with z-axis 
coinciding with the axis of the cylinder. We have only 
the radial displacement ru  which is independent of   
and z. The cylinder is placed in a constant primary mag-
netic field 0H  as shown in Figure 1. In a generalized 
plane strain, we suppose that the planes perpendicular to 
the z-axis and ru  is a function of the radial direction r 
and time t only. The Cauchy’s relations are 

, , 0,r r
rr zz zr r z

u u
e e e e e e

r r  

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   (1) 

where ije  are the strain components. The mechanical 
stress components rr  and  , and Maxwell’s elec-
tromagnetic stress component rr  are given, respec-
tively, by 

      
       

   2
0

2 ,

2 ,

.

rr rr rr

rr

rr rr

r e e r e r T

r e e r e r T

r H e e



  



   
   

 

   
    
  

   (2) 

 

 
(a)                                                              (b) 

Figure 1. Temperature distribution through the radial direction of the FGM annular cylinder at (a) different times, and (b) 
for different values the gradation exponent. 
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where T is the absolute temperature,   and   
Lamé’s coefficients,   the magnetic permeability, 

 3 2      the stress-temperature modulus, in 
which   is the linear thermal expansion, and 0H  is 
the primary magnetic field. 

The magneto-elasto-dynamic equation in the radial 
direction of the FG annular cylinder is given by 

   
2

2

1
,rr rr r

rr

u
r

r r r t
 

  
  

   
       (3) 

where   is the material density of the cylinder. The 
heat conduction equation in the absence of heat source 
can be written in the form [17] 

     
2 2

1 02 2

1 1
,rr C r T r T u

r r t r rr t
 
                      

 

(4) 

where 0T  is the reference temperature, C c  the 
specific heat at constant volume, and   is the thermal 
conductivity. 

The material properties like  ,  ,  ,  ,  , c, 
and   of the FGM cylinder are assumed to be function 
of the volume fraction of the constituent materials. The 
functionally graded between the physical properties and 
the radial direction r for ceramic and metal FG cylinder 
is given by 

    1 ,
j

m c c

r a
P r P P P

b a

      
      (5) 

where cP  and mP  are the corresponding properties of 
ceramic and metal, respectively, and j is the volume frac-
tion exponent which takes values greater than or equal to 
zero. The value of j equal to zero represents a fully metal 
annular cylinder. The above power-law assumption re-
flects a simple rule of mixtures used to obtain the effec-
tive properties of the ceramic-metal FGM annular cy-
linder. The rule of mixtures applies only to the radial 
direction. Note that the volume fraction of the metal is 
high near the inner surface of the cylinder, and that of 
ceramic high near the outer surface. In addition, Equa-
tion (3) indicates that the inner surface of the annular 
cylinder is metal-rich whereas its outer surface is ceram-
ic-rich. The density and other physical components of the 
annular cylinder according to the power law, and the 
power-law exponent may be varied to obtain different 
distributions of the component materials through the 
radial direction of the cylinder. 
 
3. Solution of the Problem 
 
Introducing the following dimensionless variables may 
be simplifying the solving process: 

   

   
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where   is dimensionless time and 0  is the linear 
thermal expansion constant. The effect of material prop-
erties variation of the FG cylinder can be taken into ac-
count in Equations (3) and (4) using Equation (5). The 
substitution of Equations (1) and (2) into Equations (3) 
and (4) with the aid of the dimensionless variables given 
in Equation (6) produces the governing equations for the 
FG cylinder as follows: 
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where 
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where the letter   in the expression 

   * .m c cV R                (10) 

is given instead of the parameters  ,  ,  , C or  . 
Note that, the prime ( )  in Equation (7) denotes diffe-
rentiation with respect to R. Also, p , p , p , p , 

pC , p  and p  (p = m or c) are Lamé’s constants, 
thermal modulus, thermal conductivity, specific heat, 
magnetic permeability, and density of the homogeneous 
metal or ceramic material, respectively, and the parame-
ter   in Equation (10) may be used to represent one of 
these constants. 

The dimensionless stresses induced by the temperature 
T and the electromagnetic stress are related to the dimen-
sionless radial displacement U by 

* * *
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U U
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             (13) 

Once again the letter   in Equation (10) is given in-
stead of the parameters  ,  ,  , or  . 

The elastic solution for the FG hollow cylinder is 
completed by the application of the initial and boundary 
conditions. The initial conditions can be expressed as 

0, 0 at 0.
T U

T U 
 
 

    
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    (14) 

The boundary conditions at the inner and outer radii of 
the FG cylinder may be expressed as 

11
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e , 0 at ,
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  
  

        (15) 

where   is an exponent of the decayed heat flux. 
 
4. Numerical Scheme 
 
A finite element scheme is used here to get the tempera-
ture and radial displacement. The finite difference grids 
with spatial intervals h (mesh width) in the radial direc-
tion and k as the time step for the maximum time max , 
and use the subscripts i and n to denote the ith discrete 
point in the R direction and the nth discrete time. A mesh 
is defined by 
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The displacement and temperature may be given for 
positive integers N and K at any nodal location by 
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The equation of motion and the heat conduction equa-
tion, given in Equations (7) and (8), may be expressed in 
the finite difference as 
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where 
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The mechanical stresses and electromagnetic stress are 
given, accordingly, by 
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The initial conditions in Equation (14) may be written 
as 
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Putting n = 0 in Equations (18) and (19), one obtains 
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where 1,2,3, , 1.i N   The boundary conditions 
given in Equation (15) at R = A may be written as 
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Putting i = 0 in Equation (18) and using the forward 
difference approximation for the temperature’s derivative 
with the aid of Equation (28), one obtains 
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Putting i = N in Equation (18) and using the backward 
difference approximation for the temperature’s derivative 
with the aid of Equation (29), one obtains 
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5. Numerical Results 
 
The temperature, displacement and stresses for the 
present cylinder are obtained using the above finite ele-
ment scheme. The results are presented in the non -di-
mensional form: 
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All results of this article are for aluminum as inner 
metal surface and alumina as outer ceramic surface. 
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or c) is given in terms of the permeability of space 
7 2

0 4 10 N A     and the relative permeability for 
both aluminum mK  and alumina cK . The material 
properties are assumed to be as: 

Metal (aluminum): 
370 GPa, 0.35, 2700 Kg m ,m m mE      

 623.1 10 K , 2.3, 237 W m K .m m mK      

Ceramic (alumina): 
3116 GPa, 0.33, 3000 Kg m ,c c cE      

 68.7 10 K , 1.0, 1.78 W m K .c c mK      

Note that the properties of  ,  , and   for metal 
or ceramic are graded through the radial direction ac-
cording to the following relations: 

    
   

, ,
1 1 2 2 1

3 2 , , .

p p p
p p

p p p

p p p p

E E

p m c


 

  

   

 
  

  

 

Results are presented in Figures 1-5 for temperature, 
radial displacement, radial stress, circumferential stress 
and electromagnetic stress according to the fixed con-
stants 

5
0 01, 0.25, 27 K, 2 10 Oersted, 2.5.b A T H        

The sensitivity of the time parameter   and the FGM 
exponent j are discussed through the figures. Figure 1 
represents the variation of the dimensionless temperature 
T through the radial direction of the FGM annular cy-
linder. Four values of the time parameter   with j = 3 
are used in Figure 1(a), while four values of the FGM 
exponent j with 0.3   are used in Figure 1(b). Simi-
lar results for the dimensionless displacement u, the radi-
al stress 1 , the circumferential stress 2  and the elec-
tromagnetic stress   are plotted in Figures 2-5, re-
spectively. 

Figure 1 shows that the absolute value of the temper-
ature decreases as the time parameter   increases and 
the FGM exponent j decreases. It is to be noted that the 
temperature is maximum for the homogeneous metal 
cylinders. The same behavior occurs for displacement 
and stress quantities. The solution satisfied the boundary 
conditions (see Figures 1 and 3) and the difference be-
tween homogeneous and FGM cases is shown. The vari-
ation of temperature, displacement, and stresses are due 
to the effect of inertia and magnetic field. It is seen that, 
the influence of the FGM on temperature, displacement 
and stresses is very pronounced. Finally, it is interested 
to see that all quantities my by vanished near and at the 
external ceramic surface of the annular cylinder. 



D. S. MASHAT 
 

Copyright © 2011 SciRes.                                                                                  AM 

128

 

 
(a)                                                          (b) 

Figure 2. Displacement distribution through the radial direction of the FGM annular cylinder at (a) different times, and (b) 
for different values the gradation exponent. 

 

 
(a)                                                           (b) 

Figure 3. Radial stress distribution through the radial direction of the FGM annular cylinder at (a) different times, and (b) 
for different values the gradation exponent. 



D. S. MASHAT 
 

Copyright © 2011 SciRes.                                                                                  AM 

129

 
(a)                                                          (b) 

Figure 4. Circumferential stress distribution through the radial direction of the FGM annular cylinder at (a) different times, 
and (b) for different values the gradation exponent. 

 

 
(a)                                                          (b) 

Figure 5. Electromagnetic stress distribution through the radial direction of the FGM annular cylinder at (a) different times, 
and (b) for different values the gradation exponent. 
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6. Conclusions 
 
The main contribution in this paper is to describe second- 
order explicit finite-difference scheme. This scheme helps 
us to solve the coupled hyperbolic equations on a uni-
form grid, and is quite efficient for computation thermal 
stresses. The results obtained show that behavior of the 
temperature, displacement and stresses may change sig-
nificantly by reason of influence of exponent heat flux 
and primary magnetic field in homogeneous and func-
tionally graded cases. These results are specific for the 
example considered, but the example may have different 
trends because of the dependence of the results on the 
magnetic and thermal constants of the metal-ceramic 
functionally graded material. 
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