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ABSTRACT

In recent time, hardy integral inequalities have received attentions of many researchers. The aim of this paper is to ob-
tain new integral inequalities of hardy-type which complement some recent results.
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1. Introduction

The classical hardy integral inequality reads:

Theorem 1 Let f (x) be a non-negative p-integrable
function defined on (0,oo), and p>1. Then, f is
integrable over the interval (0,x) for each x and the
following inequality:
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This inequality can be found in many standard books
(see [2-7]). Inequality (1) has found much interest from a
number of researchers and there are numerous new
proofs, as well as, extensions, refinements and variants
which is refer to as Hardy type inequalities.

In the recent paper [8], the author proved the following
generalization which is an extension of [9].

Theorem 2 Let f(x)el’(X), g(x)el?(X) and
fgeL"(X) be finite, non-negative measurable func-

tions on (0,), O<t<a<b<o and l+1+1:1

P q r
with 1< p<qg<o such that a<x<b. Then, the fol-
lowing inequality holds:
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[10] also proved the following integral inequality of
Hardy-type mainly by Jensen’s Inequality:
Theorem 3 Let g be continuous and nondecreasing

D:g(x)‘?(j:f(t)dg (t))q dg(x)} <
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on [a,b], 0<a<b<o, with g(x)>0 for x>0. Let
g>p=>1 and f(x) be nonnegative and Lebesgue-
Stieltjes integrable with respect to g(x) on [a,b].

Suppose & is a real number such that _—p<5<0,
q

then

C(ab, p,q,o")[j:g(x)<p-1)(1+g) . dg(x)f) .
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where,

I(p-1)

9(b)"**(9(b)*~g(a)” )" >0,

Other recent developments of the Hardy-type inequa-
lities can be seen in the papers [11-16]. In this article, we
point out some other Hardy-type inequalities which will
complement the above results (2) and (3).

2. Main Results

The following lemma is of particular interest (see also
[8]).

Lemma. Let 1<b<w, 1<p, l+£:1, and let
P q

f (x) be a non-negative measurable function such that

0< I f P (t)dt < oo . Then the following inequality holds:

o P o
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Proof
Let
1
:(Lbf (t)° dt)°I ,
then,

1

| = Dbt;f (t)° t_;dt}q

by Holder’s inequality, we have,

| < [j:tsf (1) dtJ (j t‘ldt)

(p’l)z 2 %
:(pz J [J:tp_lf (t)ﬁ dt)

We need to show that there exists x, €(a,b) such
that for any x e(a,x,), equality in (4) does not hold. If
otherwise, there exist a decreasing sequence (x,) . in
(a,b), x,\,a suchthatfor neN the mequallty 4),
written x=x,, becomes an equality. Then, to every
neN there correspond real constants ¢, and d, >0

1
7
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not both zero, such that c, {tqf(t)} =dn[t q} almost

everywhere in (x,,b).
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There exists positive integer N such that for
n>N, f(t)=0 almost everywhere in (x,b). Hence,
c,=C=#0 and d,=d=0 for n>N,and also

jfp dt_nmmj fP(t

1- P =
1 p(b P p)_oo

This contradicts the facts that 0<j fP(t
The lemma is proved.

Theorem 4 Let f(x)eL?(X), g(x)eLl(X) be
finite non-negative measurable functions on (0,x),

dt<oo.

O<a<t<b<o and l+l+1=E with 1< p<g<o
P q r

such that a < x < b, then the following inequality holds:

belq (j (fg)" dt)dx}r <C(Itp‘1 fg)pldt] )
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where C is as stated in the statement of the theorem and
this proves the theorem.

The next results are on convex functions as it applies
to Hardy-type inequalities.

Lemma. local minimum of a function f is a global
minimum if and only if f is strictly convex.

Proof

The necessary part follows from the fact that if a point
x is a local optimum of a convex function f . Then
f(z)> f(x) forany z insome neighborhood U of
x. For any y, z=Ax+(1-1)y belongs to U and
A <1 sufficiently closeto 1 implies that x is a global
optimum. For the sufficient part, we let f be a strictly
convex function with convex domain. Suppose f hasa
local minimum at a and b such that a=b and
assuming f(a)< f(b). By strict convexity and for any
A €(0,1), we have,

f(la+(1-1)b)<Af(a)+(1-2)f(b)
<Af(b)+(1-4) f (b)= f (b).

Since any neighborhood of b contains points of the
form Aa+(1-4)b with 1€[0,1], thus the neighbor-

hood of b contains points x for which f(x)< f(b).

Hence, f does not have a local minimum at b, a con-
tradiction. It must be that a =b, this shows that f has
at most one local minimum.

Lemma. Let O<b<o and —w<a<c<ow. If ¢
is a positive convex function on (a,c), then

I;§0|:Xiq [h (t)dt}dx
1

Sﬁ O(p(h(t))(bl*q —t9)dt

(6)

Proof

I;Jw{x—lqjoxh(t)dt}dxsjs’xiq(j:(p(h(t))dt)dx
SRS

- ﬁ “p(n(t)) (00—t )t

Hence the proof.
Lemma. Let h(xt) be non-negative for x,t>0,
A non decreasing and —o<a<b<cw.then

['n(x.t)"™ da(t)

< [ j:dz(t)]l; [ [h(xt)” dz(t)}i

Proof
Let @ be continuous and convex, If ® has a con-
tinuous inverse which is neccessarily concave, then by

U]
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Jensen’s inequality we have

[h(xt)da(t j¢-1[h (x.t)]dA(t)
a [da(t) [da(t)

Taking ¢(u)=u”,

[jh (xt)dA(t ]) [I(xt)r da ()

fe) | [

p =1, we obtain

-

for 1< p<q, we have

[N

[’n( xtqd/i B jh xtpqd/l()
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which we write as

['n(xt)m da(t [j dA(t ] ;U:h(x,t):d/l(t)}

This complete the proof.
Theorem51f O<b<ow and —w<a<c<ow,letf,g

be defined on (0,b) such that a < f (x),g(x)<c, then

J';exp[x—lq'[oxln( fg)dt}dx

<5 D)o e )

o |

®)

Proof

.[ob eXp[x_l”‘joX In( fg)dt]dx
b 1 cx
= ,[0 eXP(F.[O (Int(fg)- Int)dt}dx
= Iob{exp (X—lqjox Int( fg)dtjxeXp(;—quox Intdtﬂ dx

X

Since f(x)=e* is a convex function, applying
Jensen’s inequality to the above gives

j; exp [X—lq.[: In( fg)dt}dx

1 1
< obxq U (fg)dtx—exp( Inx+l)}dx

—ef! Zq(j (fg)dt)dx eft( fg U —dxjd

- o) (5

The result follows.
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Theorem 6 Let g be a continuous and nondecreasing

gative and Lebesgue-Stieltjes integrable with respect to
on [ab], O<a<b<ow, with g(x)>0 for x>0 g(x) on [a,b]. Suppose r is a real number such that
and a<t<b. Let 1<p<q and f(x) be nonne- 0>r>—w then,
1 1
e q Pt
U:g(x)p (Iof(t)dg(t)) dg(x)}q <C(a,b, p,q,r)[j:g(x) r f(x)pdg(x)}p 9)
where
Pl 1 p-1 1
r-1 r-1 p+rq p+rq
clab par)=l——]|" | —P—|"[g(b)r —g(a)r |" [g(b)» —g(a) e |
(&bpar) (r—lj [mrq) (g() o) j o) 7 -ela)s
Proof and
In the inequality (2.5), we let -1
uality (25) ) dA(t)= g (1) dg(t)
h(xt)=g(x)" g(t)r f(t)" Then, the left hand side of (2.5) becomes
X — 1 X L X
Lg(x)p g(t)r f(t =Lg( x)po(t)dg(t)
and the right hand side reduces to
i 1
X p-1| ¢x P P P P
JLo(t)rdg(t) || [La(x) g (1) f(t)"g(t = [la()r Ig BRIGRT0
p-1 1
it arat

Hence, inequality (2.5) becomes

1

L r e r-1 =l Iy ex I
(0% (1.1 0aa(0) <[] [a00' " ~a(@)" | (08| 180" (7 sato)|

for g> p, we have

a(p-1) . . q(p -1) q
r - 1 p

0% (Lrrea <[ 5] 7 o007 o7 | 7 0t o0 1 e0t)

Integrating both sides with respect to g( ) and then raising both sides to power P yields

Copyright © 2013 SciRes.
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Applying Minkowski integral inequality to the right hand side implies

p-1 r-1

o[+ Lo 1| a0 -s@ ] " a0 an(e

Since r<0

(e (g2 (-

p-1

<C(a,b, p,q, r)j:g(x)T f(x)° dg(x)

Hence, we have

o

{ P> (2 0 (1)) dg(x)}

Which complete the proof of the Theorem. [8l

3. Conclusion

This work obtained considerable improvement on Adeagbo-
Sheikh and Imoru results and applications for measurable
and convex functions are also given.

(9]
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