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Abstract 
 
In this paper, a nonautonomous predator-prey system based on a modified version of the Leslie-Gower 
scheme and Holling-type II scheme with delayed effect is investigated. The general criteria of integrable 
form on the permanence are established. By constructing suitable Lyapunov functionals, a set of easily veri-
fiable sufficient conditions are derived for global stability of any positive solutions to the model. 
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1. Introduction 
 
Predator-prey behavior is a form of very common bio-
logical interaction in nature. There are many mathemati-
cal models to model predator-prey behavior such as 
Lotka-Volterra system, Chemostat-type system, Kolmo-
gorov system, etc (see [1-6]). In recent years there has 
been a growing interest in the study of mathematical 
models incorporates a modified version of Leslie-Gower 
functional response as well as that of the Holling-type II 
(see [7-9]). In particular, in [10] the authors consider the 
following model 
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This two species food chain model describes a prey 
population x which serves as food for predator y, a, b, c, 
e, k1 and k2 are positive parameters. They established the 
sufficient conditions for the boundedness, existence of a 
positively invariant attracting set and global stability of 
coexisting interior equilibrium. In [11] the authors con-
sidered the dynamical behavior of system (1.1) with de-
lays, and establish the sufficient conditions for the exis-
tence positive equilibrium, permanence and global sta-
bility of positive equilibrium. The dynamical behavior of 
system (1.1) also has been discussed by many authors 

(see, for example, [7,12] and the references cited therein). 
However, we note that any biological or environmen-

tal parameters are naturally subject to fluctuation in time. 
As [13] pointed out that the growth properties of every 
natural population vary through time. Most, and perhaps 
all, of this variation arises ultimately from fluctuations in 
the population's environment. Physical environmental 
conditions usually change greatly through the year and 
can influence organisms directly. Good weather can sti-
mulate growth in body size and reproduction, and bad 
weather can cause death. Similarly, the biological envi-
ronment can fluctuate in ways that influence population 
dynamics. These kinds of time variation in population 
dynamical events can exert profound effects on the 
ecology and evolution of individual species and on the 
composition of ecological communities. 

In this paper, we are concerned with the effects of the 
time-dependent of ecological and environmental para-
meters and time delays due to gestation and negative 
feedbacks on the global dynamics of predator-prey sys-
tems with Modified Leslie-Gower and Holling-Type II 
Schemes. Therefore, we consider the following delayed 
differential system: 
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with initial conditions 
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  (1.3) 

where        , 0 : , 0 : 0,  , 0 ,C C s s             

    1and  0 0 , x t   and  2x t  denote the densities  
of prey and predator population, respectively; 0i   
 1, 2,3, 4i   denote the time delays due to negative 
feedbacks of the prey and the predator population, 
     1 , ,i ib t r t a t  and    1,2ik t i   are model para-

meters. These parameters are defined as follows:  1r t  
is the growth rate of prey  1 1,x b t  measures the 
strength of competition among individuals of species 

 1 1,x a t  is the maximum value which per capita reduc-
tion rate of 1x  can attain,  1k t  and  2k t  measure 
the extent to which environment provides protection to 
prey 1x  and predator 2x , respectively;  2r t  is the 
growth rate of predator 2x , and  2a t  has a similar 
meaning to  1a t . 

The organization of this paper is as follows. In the 
next section, we present some basic assumptions for sys-
tem (1.2) and two important lemmas on the nonauto-
nomous single-species logistic system. In Section 3, we 
will state and prove the sufficient conditions of integra-
ble form on the permanence of solutions for system (1.2). 
We also by means of suitable Lyapunov functionals, a 
set of easily verifiable sufficient conditions are derived 
for global stability of any positive solutions of system 
(1.2). Numerical result is presented to illustrate the valid-
ity of our main results. 
 
2. Preliminaries 
 
Let  0 : 0,R    and  : 0,R   . For a bounded 
continuous function  g t  on R , we use the following 
notations:  : sup ,u

t Rg g t   : inf R
l

tg g t . 
For system (1.2), we introduce the following assump-

tions. 
 1H  Function        1 , , ,i i ib t r t a t k t  are conti-

nuous and bounded on 0R ,  1 0a t   for all 0t  , 
and    0inf 0 1, 2t i t ik   . 

 2H  There a constant 0   such that 

   1 2inf d 0,  inflim d .l 0im
t t

t tt t
b a

 
   

 

 
    

 3H  There is a constant 0   such that 

   1 2lim linf d 0 , inf d 0.im
t t

t tt t
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It is well known by the fundamental theory of func-
tional differential equations [5] that system (1.2) has a 
unique solution       1 2,x t x t x t  satisfying initial 
conditions (1.3). If    0 1, 2ix t i   on the interval of 

existence, then  x t  is said to be a positive solution. It 
is easy to verify that solutions of system (1.2) corres-
ponding to initial conditions (1.3) are defined on  0,   
and remain positive for all 0t  . 

We consider the following single-species nonauto-
nomous logistic system with a parameter 
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Obviously, if Assumption  1H  holds, then  , ,g t u   
is a continuous function defined on  

   0 0, , 0,t u R R     , 

where 0  is constant. We easily prove that for any 
 0 0 0,t u R R    and  00,   system (2.1) has a 
unique solution  u t  satisfying initial condition 

 0 0u t u  . It is easy to see that  u t  is positive for 
all 0t t  if the initial value 0 0u  . If Assumptions 
   1 3H H  hold, then the following statements can be 
prove to be true. 

 1A  For any constant  1, , ,g t u   is bounded 
on  1

0 0, 0,R   
     . 

 2A  There are positive constants 1 2 1 2, , ,k k    and 

1 2k k  such that 
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 3A  Partial derivative  , ,0g t u u   exists for all 
  0,t u R R   , and there are nonnegative continuous 
function  q t  and a constant 0  , satisfying 

 inlim f d 0
t

tt
q


 




  

and a continuous function  p u , satisfying   0p u   
for all u R , such that 

        0

, ,0
  for all  , .
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q t p u t u R R
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 4A  Partial derivative  , ,g t u     exists for all 
   0 0, , 0,t u R R     , and for any constant 0U  , 

 , ,g t u     is also bounded on  

     0 0, , 0, 0,t u R U    . 

In system (2.1), when parameter 0   we obtain the 
following system 
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    (2.2.) 

Let  *
0u t  be a fixed positive solution of system 

(2.2) defined on 0R . We say that  *
0u t  is globally 

uniformly attractive on 0R , if for any constants 1   
and 0   there is a constants  , 0T     such that 
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for any initial time 0 0t R  and any solution  0u t  of 

system (2.1) with   1
0 0 ,u t      , one has 

   *
0 0u t u t    for all  0 ,t t T    . By Lemma 1 

given in [14], we have the following result. 
Lemma 2.1 Suppose that Assumptions    1 3A A  

hold, then 
a) There is a constants 1M   such that 

   1
0 0inf sulim lim p

t t
M u t u t M

 
    

for any positive solution  0 0u t  of system (2.2). 
b) Each fixed positive solution  *

0u t  of system (2.2) 
is globally uniformly attractive on 0R  

Let 0u R , 0 0t R  and  00,  , and further 
let  u t  and  0u t  be the solutions of systems (2.1) 
and (2.2) with initial value  0 0u t u   and  0 0 0u t u , 
respectively. By Lemma 2 given in [14], we further have 
the following result. 

Lemma 2.2 Suppose that assumptions    1 4A A  
hold, then  u t  converges to  0u t  uniformly for 

 0 ,t t   as 0  . 
 
3. Main Results 
 
In this section, we proceed to discussion on the perma-
nence and global stability of any positive solution of 
system (1.2) corresponding to initial conditions (1.3). 

We first give the result of the ultimate boundedness of 
any solution for system (1.2). 

Theorem 3.1 Suppose that Assumptions    1 3H H  
hold, then any solution       1 2,x t x t x t  of system 
(1.2) corresponding to initial conditions (1.3) are ulti-
mately bounded. 

Proof: Let       1 2,x t x t x t  be any solution of 
system (1.2) corresponding to initial conditions (1.3). 
From the first equation of system (1.2) we have 
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For any t   and  , 0s   , integrating (3.1) from 
t s  to t  we obtain 

         1 1 1 1 1exp exp .u ux t s x t r s x t r      

By assumptions  1H , we further have 
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for all 0t  . It is proved in many articles, for example, 
see [15], that under Assumptions    1 3H H  any pos-
itive solution  u t  of the following non-autonomous 
single-species logistic equation 
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is ultimately bounded. Hence, using the comparison 
theorem, we can obtain that there is a constant 1 0M   
such that for any solution       1 2,x t x t x t  of sys-
tem (1.2) corresponding to initial conditions (1.3), there 
is a 1 0t   such that  1 1x t M  for all 1t t . 

From the second equation of system (1.2) we have 

       2
2 2 2 2

d
.

d
ux t

x t r t r x t
t

          (3.2) 

For any t   and  , 0s   , integrating (3.2) from 
t s  to t we obtain 

         2 2 2 2 2exp exp .u ux t s x t r s x t r      

By assumptions  1H , we further have 

         
   2 2 2

2 2 2
1 2

d
exp

d
ux t a t x t

x t r t r
t M k t


 

    
 

for all 1t t   . The comparison equation is the logistic 
equation 
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Similarly, by Assumptions    1 3H H , we further 
can obtain that there is constant 2 0M   such that for 
any solution       1 2,x t x t x t  of system (1.2) cor-
responding to initial conditions (1.3), there is a 2 1t t  
such that  2 2x t M  for all 2t t . Therefore, the so-
lution  x t  is ultimately bounded. This completes the 
proof of this theorem. 

In particular, when parameter 2 4 0    in system 
(1.2), we obtain the following system 
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(3.3) 
with initial conditions 

           1 1 1 1 2, ,0 , , 0 , 0 0x C x              

(3.4) 
As a consequence of Theorem 3.1, we have the fol-

lowing corollary on the ultimate boundedness of any 
solution for system (3.3) with the initial conditions (3.4). 

Corollary 3.1 Suppose that Assumptions    1 3H H  
hold, then any solution       1 2,x t x t x t  of system 
(3.3) corresponding to initial conditions (3.4) is ulti-
mately bounded. 

Next, on the permanence of component 2x  of system 
(1.2) with the initial conditions (1.3), we have the fol-
lowing result. 

Theorem 3.2 Suppose that Assumptions    1 3H H  
hold, then the component 2x  of system (1.2) is perma-
nent, in the sense there is a constant 0   such that 
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 2inflim t x t    for all solutions of system (1.2) 
corresponding to initial conditions (1.3). 

Proof: Let       1 2,x t x t x t  be any solution of 
system (1.2) corresponding to initial conditions (1.3). 
From Theorem 3.1, there is constant 0M   such that 
for any positive solution  x t  of system (1.2), there is a 

0T   such that    1, 2ix t M i   for all t T . 
Therefore, from the second equation of system (1.2) we 
have 

       
   2 2
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  (3.5) 

for all t T   , where  

      1 2 2 2sup .t R r t a t M k t
   

For any t T    and  , 0s   , integrating (3.5) 
from t s  to t we obtain 

         2 2 1 2 1exp exp .x t s x t s x t       

Further, we have 
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for all t T   . By Assumptions    1 3H H  and 
Lemma 2.1, we can obtain that the component u of sys-
tem 
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is permanent. Hence, using the comparison theorem, we 
can obtain the component 2x  of system (1.2) is perma-
nent. This completes the proof of this theorem. 

In order to obtain permanence of component 1x  of 
system (1.2), we consider the following auxiliary system 
with a parameter 
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In particular, when 0   in system (3.6), we obtain 
the following system 
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By Assumptions    1 3H H , we see that system 
(3.7) satisfies all conditions of Lemma 2.1. Hence, by 
Lemma 2.1, each positive of system (3.7) is globally 
asymptotically stable. Let  *

20x t  be some fixed solu-
tion of system (3.7) with initial value  *

20 0 0x  . On 
the permanence of component 1x  for system (1.2), we 
have the following result. 

Theorem 3.3 Suppose that Assumptions    1 3H H  
hold and there is a constant 0   such that 
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then the component 1x  of system (1.2) is permanence. 
Proof: Let       1 2,x t x t x t  be any solution of 

system (1.2) corresponding to initial conditions (1.3). 
From Theorems 3.1 and 3.2, there are constants 0M   
and 0m   such that for any positive solution  x t  of 
system (1.2), there is a 0T   such that  1x t M  and 

 2m x t M   for all t T . 
In fact, if inequality (3.8) is true, then by Assumption 

 3H , we can choose enough small positive constants 

0 1, ,    and 0 1  , and an enough large 0T T  
such that 
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(3.9) 

For any 0  , let  2x t  be the solution of system 
(3.6) with initial value    *

2 200 0x x  . Hence, by con-
clusion (b) of Lemma 2.1 and Lemma 2.2, there is a con-
stant 0 0   such that 

   * 1
2 20 2

x t x t


   

for all 0t   and  00,  . 
Let  0 1min ,   ,  2x t  be any positive solu-

tion of the following system 
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with initial value    *
2 200 0x x  . 

In the following, we will use two claims to complete 
the proof of Theorem 3.3. 

Claim 3.1 For the above constant  , there always 
exist  1suplim t x t    for any positive solution 
 x t  of system (1.2). 
In fact, if Claim 3.1 is not true, then there is a positive 

solution       1 2,x t x t x t  of system (1.2) such that 
 1suplim t x t   . Hence, there is a 1 0T T  such that 

 1x t   for all 1t T . Further, using the comparison 
theorem and Lemma 2.1, we can obtain that there is a 
constant 2 1T T  such that 

     *1
2 2 20 12

x t x t x t


             (3.11) 

for all 2t T   . From the first equation of system (1.2) 
we have 
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for all 2t T   . By (3.9) it follows that  1x t   as 
t  . This is contradictory with  1x t   for all 

2 .t T    From this contradiction we finally conclude 
that 

 1suplim
t

x t 


  

Therefore, Claim 3.1 is true. 
Claim 3.2 There is a constant 0   such that 

 1inflim t x t    for any positive solution  x t  of 
system (1.2). 

If Claim 3.2 is not true, then there is a sequence of 
function 

    1 2, : , 0 , 1,2n n n in C i         

such that for the solution     1 2, , ,n nx t x t   of sys-
tem (1.2) 

 1 2
inf , ,  1,2, .lim n

t
x t n

n




     

By Claim 3.1, for every n there are two time se-

quences   n
qs  and   n

qt , satisfying 

           
1 1 2 20 n n n n n n

q qs t s t s t          

and  lim n
q qs   , such that 

     1 1 2
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q n q nx s x t
n n

 
          (3.12) 

and 

      12
, for all , .n n

n q qx t t s t
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     (3.13) 

From the ultimate boundedness of system (1.2) and 
Theorem 3.2, we can choose a positive constant  nT  for 
every n such that  1 , nx t M  and  2 , nm x t M    

for all  nt T   . Further, there is an integer  
1 0nK   

such that    n n
qs T    for all  

1
nq K . Let  

1
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then for any    ,n n
q qt s t     we have 
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where        0 0 1 1 1 1supt r t b t M a t k t M      . In- 

tegrating the above inequality from  n
qs  to  n

qt , we 

further have 

          1 1 0, , exp .n n n n
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Consequently, by (3.12) 
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By (3.9), there is constant P   such that 
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for all 2t T  and P  . 
Let  2x t  be the solution of system (3.10) with ini-

tial value      2 2 ,n n
q q nx s x s   . Since for any n, q 

and    ,n n
q qt s t     we have  1 , nx t X   and 

         
   2 2 2

2 2 2 4
2

d
exp ,

d
ux t a t x t

x t r t r
t k t




 
   

  
 

by the comparison theorem, we have 
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 2x t  is the globally uniformly attractive solution of 
system (3.10), we obtain that there is a constant 3 2T T  
and such that 
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This leads to a contradiction with (3.12). Therefore, 
Claim 3.2 is true. 

Finally, from Claims 3.1 and 3.2 we see that Theorem 
3.3 is proved and this completes the proof of this theo-
rem. 

Remark 3.1 Nindjin and Aziz-AlaouiIn [11] discussed 
the following system 
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They stated that if 
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then system (3.19) is permanent. We note that, when 
system (1.2) degenerates into system (3.19), the condi-
tion (3.20) clearly implies the condition (3.8) in Theorem 
3.3. So the theorem of A. F. Nindjin, M. Aziz-AlaouiIn 
(Theorem 5 in [11]) is a special case of Theorem 3.3. So 
our results are fresh and more general. 

A direct consequence of Theorem 3.3 is the following 
result on the permanence of system (3.3) and (3.4). 

Corollary 3.2 Suppose that Assumptions    1 3H H  
hold and there is a constant 0   such that 
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where  *
2x t  is be any solution of the following system 
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then system (3.3) is permanent. 
Finally, we proceed to the discussion global stability 

of any positive solution of system (1.2). We first derive 
certain upperbound estimates for solution of system (1.2). 

Theorem 3.4 Let       1 2,x t x t x t  denote any 
solutions of system (1.2) corresponding to initial condi-
tions (1.3). Suppose that Assumptions    1 3H , H  hold, 
and 1 0lb  , 2 0la  , then there is a constant 0T   
such that if t T , 

   1 1 2 20 ,0 ,x t M x t M     

where 
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The proof of Theorem 3.4 is similar to that of Theo-

rem 2.1 in [16], we therefore omit it here. 
We now formulate the global stability of any positive 

solutions of system (1.2).  
Theorem 3.5 Let       * * *

1 2,x t x t x t  denote any 
positive solutions of system (1.2). Suppose that Assump-
tions    1 3H , H  hold, and 1 0lb  , 2 0la  , assume 
further that 

   4H iim nf 0l i
t

B t
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(3.22) 

Then the solution       * * *
1 2,x t x t x t  is globally 

asymptotically stable. 
Proof: Let     1 2,x t x t  be any solution of system 

(1.2) and (1.3). It follows from Theorem 3.4 that there 
exist positive constants T and iM  (defined by (3.21), 
such that for all t T , 

   *0 , 0 , 1,2.i i i ix t M x t M i         (3.23) 

We define 

     *
11 1 1ln ln .V t x t x t   

Calculating the upper right derivative of  11V t  along 
solutions of system (1.2), it follows that 
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(3.24) 

where 

         *
1 1 1 1 1 1 1t x t k t x t k t            

         *
2 1 3 2 1 3 2 .t x t k t x t k t             

On substituting (1.2) into (3.24), we derive that 
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 (3.25) 

Define 
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(3.26) 

We obtain from (3.25) and (3.26) that 

   

     
     

 
     

       
 
         

         
     

   

1

11 12

1 2 2 *
1 1 1

1

1 *
2 2 2 2

1

1 1 1 1 1

1 *
1 2 2 1 1 2 2

1

1* *
1 1 1 1 1 2 2

1

*
1 1 1 1

  

  d

  

  

  

t

t

D V t V t

a t x t
b t x t x t

t

a t
x t x t

k t

b s s r t b t x t

a t
k t x t x t x t

t

a t
x t x t b t x t x t x t

t

a
x t x t





 



  



 







 
    

  

   

  


        

 
     

  

    





 
     

       

1 *
1 1

1

*
1 1 1 2 2 2 2  .

t
k t x t

t

x t x t x t x t  



    

 

(3.27) 
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We now define 

       1 11 12 13 ,V t V t V t V t         (3.28) 

where 
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and 

   
     

   
     

2

1 2

2 2

1 2 *
14 2 2

1 2

1 2 1 *
1 2 2

1 2

d

           d d .

t

t

lt

t l

a s
V t x s x s s

k s

a l M
b s x l x l s l

k l



 

 









 

 


 




 





 
 

(3.30) 

It then follows from (3.23) and (3.27)-(3.30) that for 
t T   , 
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(3.31) 

Similarly, we define 

     2 21 22 ,V t V t V t            (3.32) 

where 

     *
21 2 2ln lnV t x t x t          (3.33) 

and 
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(3.34) 

Calculating the upper right derivative of  2V t  along 
solutions of system (1.2), we derive for t T    that 
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(3.35) 

We define a Lyapunov functional  V t  as 

         1 2 3 4 ,V t V t V t V t V t         (3.36) 

where 

   
     

 
 

 
 

   

3

3 4

3 3

2 3 2 *
3 1 12

2 3

2
2 3 22 *

1 12
2 2 3

d

         d d

t

t

lt

t l

a s M
V t x s x s s

k s

a l Ma s
x l x l s l

k s k l



 

 









 

 


 




 





 
 

(3.37) 

and 
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(3.38) 

It then follows from (3.22), (3.31), and (3.35)-(3.38) 
that for t T    

             * *
1 1 1 2 2 2 .D V t B t x t x t B t x t x t       

(3.39) 

where  1B t  and  2B t  are defined in (3.22). 
By Assumption  4H , there exist positive constants 

1 , 2  and *T T    such that if *t T  

  0, 1,2.i iB t i               (3.40) 

Integrating both sides of (3.39) on interval * ,T t   , 

         *

2
* *

1

d . 
t

i i iT
i

V t B s x s x s s V T


    (3.41) 

It follows from (3.40) and (3.41) that 
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       *

2
* * *

1

d for all .
t

i i iT
i

V t x s x s s V T t T


      

Therefore,  V t  is bounded on *,T    and also 

   *
*  d , 1, 2.i iT

x s x s s i


     

By Theorem 3.4,      *  1,2i ix t x t i   are bounded 

on * ,T   . 

On the other hand, it is easy to see that  *
ix t  and 

    1, 2ix t i   are bounded for *t T . Therefore, 

     *  1,2i ix t x t i   are uniformly continuous on 
* ,T   . By Barbalat’s Lemma ([17], Lemmas 1.2.2 and 

1.2.3), we conclude that 

   *lim 0, 1, 2.i i
t

x t x t i


    

This completes the proof of this theorem. 
Remark 3.2 If time delays 1 , 2 3 3, ,    and 4  are 

naturally subject to fluctuation in time in system (1.2). 
Similar Theorem 3.1-3.5, we can obtain the sufficient 
conditions on the permanence and globally asymptoti-
cally stable of any positive solutions for system (1.2). 

Finally, we give some examples to illustrate the feasi-
bility of our main results on the permanence of system 
(1.2). 

Example 3.1 In system (1.2), let 0.2
1 0.2 0.05r e   

0.1sin ,t  1 0.9cos ,b t  2 0.4,r   1 2 11,  2,a a k    

1 2 20.1,  0.5,  1k    . It is easy to verify that coeffi-
cients of system (1.2) satisfy (3.8). By Theorem 3.2 and 
3.3, system (1.2) is permanent. 

Example 3.2 In system (1.2), let 0.2
1 0.2r e , 

1 0.1b  , 1 2 1a a  , 1 2k  , 2 0.4r  , 1 0.1,   

2 0.5  , 2 1k  . By Theorem 3.2 we see that the com-
ponent 2x  of system (1.2) is permanent. However, it is 
easy verify that 

2 4 0.2 0.2
1 1 2 2 1 2 0.2 0.4 2 0rr a r k e k a e e     

thus (3.8) does not hold for system (1.2) and we cannot 
get any information by Theorem 3.3. In this case, we 
note that 0.2

1 1 2 2 1 2 0.2 0.4 2 0r a r k k a e     and nu-
merical simulation suggests that system (1.2) with a se-
quence initial condition  1 2,     is permanent. 

In the example 3.2, from numerical simulation, we 
note that the time delays are harmless for the permanence. 
Therefore, as an improvement of Theorems 3.2 and 3.3, 
we give the following interesting conjecture. 

Conjecture: Suppose the assumptions of Corollary 3.2 
hold, then system (1.2) is permanent. 
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