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ABSTRACT 

Based on the definition and properties of discrete fractional Fourier transform (DFRFT), we introduced the discrete 
Hausdorff-Young inequality. Furthermore, the discrete Shannon entropic uncertainty relation and discrete Rényi en-
tropic uncertainty relation were explored. Also, the condition of equality via Lagrange optimization was developed, as 
shows that if the two conjugate variables have constant amplitudes that are the inverse of the square root of numbers of 
non-zero elements, then the uncertainty relations reach their lowest bounds. In addition, the resolution analysis via the 
uncertainty is discussed as well. 
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1. Introduction 

Uncertainty principle not only holds in analog signals, 
but also in discrete signals [1,2]. Recently, with the de-
velopment of fractional Fourier transform (FRFT), ana-
log generalized uncertainty relations associated with 
FRFT have been carefully explored in some papers such 
as [3,4,16], which effectively enrich the ensemble of 
FRFT. However, up till now there has been no reported 
article covering the discrete generalized uncertainty rela-
tions associated with discrete fractional Fourier trans-
form (DFRFT). From the viewpoint of engineering ap-
plication, discrete data are widely used and seem to be 
more profitable than the analog ones. Hence, there is 
enough need to explore discrete generalized uncertainty 
relations. DFRFT is the discrete version of FRFT [5,6], 
which is applied in practical engineering fields. In this 
article we will discuss the entropic uncertainty relations 
[7,8] associated with DFRFT. In this article, we made 
some contributions such as follows. The first contribu-
tion is that we extend the traditional Hausdorff-Young 
inequality to the FRFT domain with finite supports. It is 
shown that these bounds are connected with lengths of 
the supports and FRFT parameters. The second contribu-
tion is that we derived the Shannon entropic uncertainty 
principle in FRFT domain for discrete case, based on 
which we also derived the conditions when these uncer-
tainty relations have the equalities via Lagrange optimi-

zation. The third contribution is that we derived the 
Renyi entropic uncertainty principle in FRFT domain for 
discrete case. The final contribution is that we discussed 
the resolution in multiple FRFT domains as a succession 
of above derivative, including new proofs. In a word, 
there have been no reported papers covering these gener-
alized discrete entropic uncertainty relations on FRFT. 

2. Preliminaries 

2.1. FRFT and DFRFT 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on 
the custom paper size (21 cm * 28.5 cm). 

Before discussing the uncertainty principle, we intro-
duce some relevant preliminaries. Here we first briefly 
review the definition of FRFT. For given analog signal 
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where Zn and  is the complex unit, i  is the trans-
form parameter defined as that in [5,6]. In addition, 
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Also, we can rewrite the definition (2) as 
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where .  
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Clearly, for DFRFT we have the following proper-
ties[5]: 
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In the follows, we will assume that the transform pa-
rameter  20   and   . The max difference 
between the discrete and analog definitions is the support: 
one is finite and discrete and the other one is infinite and 
analog. 

2.2. Shannon Entropy and Rényi Entropy 

For any discrete random variable ( ) and 
its probability density function , the Shannon en-
tropy [9] and the Rényi Entropy [10] is defined as, re-
spectively 

nx
)nx

Nn ,,1
(p

  )(ln)(
1 n

N

n nn xpxpxH  
 , 

    



 N

n nn xpxH
1

)(ln
1

1 

 
. 

Hence, in this article, we know that for any DFRFT 
, the Shannon entropy and 

the Rényi Entropy associated with DFRFT is defined as, 
respectively 
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Clearly, if ,1     xHxH ˆˆ  . 

2.3. Discrete Hausdorff-Young Inequality  
Associated with DFRFT 

Let  
be a discrete time series with cardinality N and its 
DFRFT  with  

and the transform parameter 
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Then from Riesz’s theorem [11,12], we can obtain the 
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Since the value of X  can be taken arbitrarily in , 
 can also be taken arbitrarily in . Therefore, we 

can obtain the following lemma. 
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Clearly, this is the discrete version of Hausdorff- 
Young inequality. In the next sections, we will use this 
lemma to prove the new uncertainty relations. 

3. The Uncertainty Relations 

3.1. Shannon Entropic Principle 

Theorem 1: For any given discrete time series 
    )(,),3(),2(),1(,,,, 321 NxxxxxxxxX N  CN 

with cardinality N and 1
2

,  (  ) is the DFRFT 
series associated with the transform parameter 

X x̂ x̂
 (  , 

respectively),   ( N ) counts the non-zero elements 
of  (  , respectively), then we can obtain the gener-
alized discrete Shannon entropic uncertainty relation 

N
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Take natural logarithm in both sides in above inequal-
ity, we can obtain 
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we can obtain the final result in theorem 1.  
Now consider when the equality holds. From theorem 
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3.2. Rényi Entropic Principle 
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Take natural logarithm in both sides of (5), we can 
obtain 
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Clearly, as 1  and 1 , the Renyi entropy 
reduces to Shannon entropy, thus the Renyi entropic un-
certainty relation in (4) reduces to the Shannon entropic 
uncertainty relation (3). Hence the proof of equality in 
theorem 2 is trivial according to the proof of theorem 1. 

Note that although Shannon entropic uncertainty rela-
tion can be obtained by Rényi entropic uncertainty rela-
tion, we still discuss them separately in the sake of inte-
grality. 

4. Resolution Analysis in Time-Frequency 
Domain 

In many cases [13-15], we often discuss the data concen-
tration in both time domain and frequency domain, 
therefore, we will adopt a new measure on entropy: 
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Taking into account of the non-negative second de-
rivative, therefore we know that 
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Thus the proof is completed. Note that this proof can 
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be obtained via the similar manner with Section 3 A, 
however, we still give a new proof so that we can under-
stand this point out of different aspect. On the other hand, 
different proofs yield the same result, as validates the 
conclusion derived here. 

5. Conclusions 

In this article, we extended the entropic uncertainty rela-
tions in DFRFT domains. We first introduced the gener-
alized discrete Hausdorff-Young inequality. Based on 
this inequality, we derived the discrete Shannon entropic 
uncertainty relation and discrete Rényi entropic uncer-
tainty relation. Interestingly, when the variable’s ampli-
tude is equal to the constant, i.e. the inverse of the square 
root of number of non-zero elements, the equality holds 
in the uncertainty relation. In addition, the product of the 
two numbers of non-zero elements is equal to 

)sin(  N , i.e., )sin(   NNN .  
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