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ABSTRACT 

We consider the problem of distributing the stress-strain state (SSS) characteristics in the body arbitrarily loaded on the 
outer surface and weakened by a physical cut with a thickness of 0 . It is assumed that 0  parameter is the smallest 

possible size permitting the use of the hypothesis of continuity. The continuation of the physical cut divides the body 
into two parts interacting with one another by means of a contact with  -layer. Due to constant average stresses and 
strains over the layer thickness, the problem reduces to the system of variational equations for the displacement fields in 
the adjacent bodies. The geometry of the bodies under consideration has no singular points and, as a consequence, has 
no singularity of stresses. The use of average characteristics makes it possible to disregard a form of the physical cut 
end. The obtained solution can be used for processing of experimental data in order to establish the continuity scale 0 . 

The entered structure parameter for silicate glass is assessed using known mechanical characteristics. 
 
Keywords: Crack; Physical Cut; Characteristic Size 

1. Introduction 

Strength calculations for structural parts and elements 
with various stress concentrators as part of the classical 
concepts of continuum mechanics (CM), as a rule, lead to 
unreal stress values in the neighbourhood of singular 
points in terms of strength characteristics. This is caused 
by the use of the hypothesis of continuity. While the cut 
curvature radius is large enough in comparison with the 
crystals of the matter, it has no effect on the stress distri- 
bution, but if the curvature is commensurate with the 
crystal sizes, the questions of whether it is reasonable to 
use the classical theory of elasticity arise. 

Note that the crack in a solid body naturally generates 
a stress concentrator and, in this case, consideration of 
the medium structure permits eliminating some contra- 
dictions in the model representation related to the singu- 
larity of the stress field in the singular points. However, 
the question is how to determine the average characteris- 
tics on the entered structural elements. In this case, two 
approaches can be distinguished. The first one [1-3] uses 
singular solutions of the theory of elasticity for the crack 
model in the form of a mathematical cut, and averaging 
over the entered generic element is carried out on their 
basis. The second one [4-7] attributes a homogeneity 
property of the stress-strain state (SSS) to the structural 
element in a particular direction (e.g., orthogonally to the  

supposed direction of fracture) and the coupled problem 
[6,7] on SSS determination, both in the structural ele- 
ment and in the medium adjacent to it, is solved, where 
CM classical solutions are deemed to be feasible. Thus, 
in the paper [8], a layer with characteristic thickness 0  
is singled out assuming the strain homogeneity through 
its thickness in the crack development trajectory. How- 
ever, the paper [8] does not include 0  

parameter esti- 
mations and statements of the relevant problems. 

The model presenting the crack as a physical cut with 
a thickness of 0  is proposed in the papers [4-8] for 
SSS determination in the bodies with cracks. In addition, 
the model also includes a material layer on the extension 
of the cut. Material adjacent to the layer can be regarded 
within the framework of the classical CM concepts, using 
the layer boundary stresses as boundary conditions. The 
stress state of the layer is described by average and boun- 
dary stresses connected by equilibrium conditions [6,7]. 
The use of the average characteristics allows not consid- 
ering the geometry of the physical cut transition to the 
material layer. Defining relations within the layer are 
considered for average stresses and strains. The singular- 
ity of the physical cut model can be excluded by intro- 
ducing a definite form of its end, i.e. a part of a circle or 
an ellipse. However, this case raises the question of the 
corresponding curvature radiuses. The book [9] deter-  
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mines an experimental dependence of КIC on the sharp- 
ness (curvature radius of the notch base) of the stress 
concentrator. The obtained dependence shows that КIC 
quickly falls with a decrease in the notch base radius 
until it reaches some threshold value. The further de- 
crease in the curvature radius has no effect on КIC char- 
acteristic. It demonstrates the presence of some typical 
size which would make the fracture beginning inde- 
pendent of the cut end geometry. In our situation, the 
physical cut thickness is associated with this typical size, 
so there’s no point in discussing a form of its end. The 
introduction of average characteristics over the layer 
thickness makes it possible to dismiss the questions re- 
lated both to infinite stresses on the physical cut exten- 
sion in the continuous medium and to a form of the 
physical cut end, so the corresponding boundaries are 
shown in Figure 1 with a wavy line. The boundary 
stresses associated with average equilibrium conditions 
[6] are also considered for the layer. The layer/medium 
conjunctions are established by the layer boundary 
stresses on the surface which has no singular points and, 
as a consequence, has no singularity. The article [7] in- 
cludes solutions for infinite linear-elastic medium with 
the physical cut. The paper [6] for perfectly elastoplastic 
behavior of the layer material solves the analogue of the 
Dugdale problem [10]. This article provides general 
statement of the problem of damaged finite body strain- 
ing. 

2. Problem Statement 

Let us consider loading of the finite body with the phys- 
ical cut with a length of а and a thickness of 0  ac- 
cording to the diagram in Figure 1. The X-axis of the 
Cartesian system is to be associated with the direction of 
the cut, and the reference point is to be associated with 
its middle. Following the model presentation [4-7], let us 
consider the material layer overlying the extension of the 
physical cut. The corresponding areas are numbered 3 
 

 

Figure 1. Loading scheme. 

and 4 in Figure 1. Let us consider that distributed exter- 
nal load  is imposed on parts of the body 
surface, and load  is imposed on the ends 
of the physical cut.  

1 2 3 4, , ,P P P P
1 2Q Q 3 4, , ,Q Q

Let us use the following designations for the layer 
boundary stresses:    21 1 21 1 0, 2σ x σ x   ,   

   21 1 21 1 0, 2 ,  σ x σ x      22 1 22 1 0 2 ,x σ x ,    

   22 1 22 1 0,σ x σ x    2 . We assume that the stress 
vectors on the layer adjoint boundaries are equal and 
opposite to the stress vectors of the body adjoint bounda- 
ries: 

   
21 21 22 22,b b                   (1) 

We have a rigid coupling between the boundaries: 
 b  u u .                (2) 

And continuous displacements along the layer bounda- 
ries. “b” index is related to the body areas adjacent to the 
layer. 

Let us define average stresses, strains and displace- 
ments in the layer using their boundary values as follows: 
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      1 1 1 1 1 10.5 ,u x u x u x          (10) 

      2 1 2 1 2 10.5 .u x u x u x          (11) 

We derive the expression of average shear strain along 
the layer from the expressions (8) and (9): 
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    (12) 
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Let us consider equilibrium condition for the body dis- 
pose out of the cut, using: 

where 

         
1 2 3 4

e i i i iA A A A A             0 ,   (13) 

 eA   is work of external surface loads;  
1

iA  , 
 
2
iA  ,  

3
iA  ,  

4
iA   are work of internal stresses in 

the relevant areas of the body. 
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  (14) 

where 

 P u

u  is vector of mean displacements on 
end; h is body thickness in the direction orthogonal to the 
plane 

 of the formulae (10), (11), the expression 
(14) may be written as: 

.

the cut 
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Let us consider the work of internal stresses in area 3: 

 
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where ,   are tensors of the layer average stresses 
an

 
the average stress and strain tensor (
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The work of the internal stresses in area 4 may be ob- 
tained in a similar way: 
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the work (16) may be presented as: 
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Using the system (13) - (18), we obtain: 

 
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The work of the distributed external load may be 
presented as: 
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Using (10), (11), we can derive from the last equation 
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On the analogy with (20), the distributed external load 
may be presented as: 
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With regard to (20) and (21), the expression (19) falls 
into two variational equations of equilibrium. For body1: 
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and for body 2: 
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 (23) 

Fo he relations between the aver- 

1 1 2 2
F F F F 
 

2

A B 

r the layer material, t
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age stresses and strains may be presented in the form of 
Hooke’s law for the case of plane strain: 

 
  

1

1 1 2

E
A


 




 
, 

  1 1 2

E
B


 


 

, 
 1

E
C





, E  

is Young’s modulus, 11 11 22A B                  (24)   is Poisson’s ratio. 
Relations (24)-(26) with regard to the expressions (6), 

(7), (12) may be substituted in (22). 
Let us group the summands in the expression in rela- 

tion to 

22 22 11A B    ,             (25) 

12 12C  ,                   (26) 

0 : where 
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 (27) 

Relation (23) may be written in a similar way: 
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   (28) 

 
Specific virtual work of stresses in the bodies 1 and 2 

located outside the layer is determined in accordance 
with Hooke’s law (24)-(26) through the displacement 
field as follows: 
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        (29) 

The system of variational Equations (27) and (28) with 
regard to the expression (29) allows us to determine the 
displacement field in the bodies 1 and 2 including dis- 
placement  along the boundaries of the 
la e most 
ob

3. Determination of the Characteristic Size 

The main problem of the proposed statement is the de- 
termination of . Alternatively, the entered parameter 
may be found ing the scheme of loading with concen- 
trated load as shown in Figure 2 for brittle materials. 

Due to the problem symmetry, it is sufficient to con- 
sider one half of the body 1. In this case, we have the 

following conditions for the layer boundaries: 

1 1 2 2, , ,u u u u   

yer. The finite element method seems to be th
vious way of solution this problem. 

0d
us

1 1u u  ,                    (30) 

2 2u u   .                   (31) 

With regard to the conditions (30) and (31), the varia- 
tional relation (27) for the right half of the body 1 may be 
written as: 
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x     (32) 

Under the following boundary conditions: 

1 120; 0u    on SO (symmetry conditions)    (33) 

 on VS (free-surface conditions)  (34) 22 120; 0  

 on FV (free-surface conditions)  (35) 11 120; 0  

22 120; 0    on OA (free-surface conditions)  (36) 

When solving the system (32)-(36) under given 
and 

P  

0 ,
body lim

 we can find the SSS distribution both over 
ited by FVSO contour, and over the ad

layer. 

the 
jacent 
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parameter 

 

Figure 2. Scheme of loading with concentrated load. 
 

To define a value 0 , we can use the linear relation- 
ship in the elastic ween power P and SSS char- 
acteristics in the local area. We can adopt strain 

field bet

22  or 
stress 22  

nts of th
in the , as well as ace- 

me e force these character
us assume that local rigidity is found in the experiment 

end zone
points 

 AA
 as 

displ
istics. Let P

o

ex
ex

P
C

u
 , 

here is experimentally determinable force value, w exP  

o  
is relevant displacement of point О. 

By solving the Equation (27), we find the value of the 
set local rigidity depending on the layer thickness - 
 0C

u

 . Given th  at , we can find 0 exC C  0 . 
ntal data to de- We failed to find t experime

termine the rigidity  in the available literature. 
Therefore, we offer an ct method for determination 
on the basis of the  values of fracture toughness 

he initial 

exC
 indire

known

ICK  and critical stress 22 cr  . 
nsity coeIt is known that stress inte fficient

gram in Figure 2 is defined by the formula [11]: 
 for the dia- 

  
 

DF

DF DF0.5 sin a 

where DF  is sample length. 
Thus, critical force may be found by the formula: 

cos 2
I

P a
K





, 

 
  

DF DF

DF

0.5 sin

cos 2
IC

cr

K a
P

a






 


.        (37) 

For silicate glass: 106.7 10 PaE   ,  
71.7 10 Pa mICK     [11]. Let us consider a sample 

(see Figure 2) with the following dimensions: 

DF 0.2 m , FV 0.1 m , 0.02 ma  . Using the for- 

mula (37), we determine: 7 N
0.3 10P   . Figur

mcr e 2  

shows the dependence of breaking stress in the cut top on 

0  

quad

in

for critical force found in the Equation 
(32) obtained by means of the finite element method. We 
used the ratic approximation of the displacement 
field on the element, the element size in the neighbour- 
hood of po t O was equal 0 . 

, folloGlass g strength wing the paper [12], var- 
ies from 1.5 × 107 Pa for severely damaged glass to 1500 
× 107 Pa for undamaged glass. Furthermore, the latter 
value is close to the lower limit of the theoretical strength 
of glass, which varies within 
It is known that the glass tens
less than the compression strengt
cludes the bend loading of ac

Further, we assum
 glass is 
 3  

equal to about half a millimeter as shown in the paper [3]. 
The article [4] contains the following relationship for  

brittle materials: 

breakin

7 71000 10  - 4550 10 Pa  . 
ile strength is 15 - 20 times 

h. The review [12] in- 
id-etched glass rod 

e that tensile strength of 
7100 10 Pa  . In this case, 

, we obtain a structure parameter
the obtained value corre-
Neuber particle, which is 

to stress 
788 10 Pa . 

the defect-free
using Figure

0 2.5 10  
sponds to a linear size 

cr

. Note that 
of the 

4 m

2

0 2 IC

cr

K



 

  
 

4

, which gives a some- 

what higher result: 

4. Conclusion 

Based on the results of the 
experiments for specific el
tem of Equations (27) and (2
tion of SSS characteristics in
in

ach allows us to avoid the singularity of 
stresses and strains in the crack end in contrast to the 
classical representation of the crack in the form of the 
mathematical cut. 
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