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ABSTRACT

A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which
both objective and constraint functions contain support functions; hence it is nondifferentiable. Under second-order
strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak,
strong, strict converse and converse duality theorems are established for this pair of dual continuous programming
problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed.
A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear pro-
gramming problem with support functions is briefly outlined.

Keywords: Continuous Programming; Second-Order Generalized Invexity; Second-Order Duality; Nonlinear
Programming; Support Functions; Natural Boundary Values

1. Introduction

Chen [1] was the first to identify second-order dual for-
mulated for a constrained variational problem and estab-
lished various duality results under an involved invexity-
like assumptions. Husain et al. [2] have presented Mond-
Weir type second-order duality for the problem of [1]
and by introducing continuous-time version of second-
order invexity and generalized second-order invexity, vali-
dated various duality results. Subsequently, for a class of
nondifferentiable continuous programming problems,
Husain and Masoodi [3] studied Wolfe type second-order
duality while Husain and Srivastava [4] investigated Mond-
Weir type second-order duality. Recently, in the spirit of
Mangasarian [5], Husain and Masoodi [6] studied Wolfe
type second-order duality for a continuous programming
problem having support functions appearing in the inte-
grand of the functional as well as in the constraint func-
tions under second-order invexity and second-order pseu-
doinvexity conditions. They also incorporated a pair of
second-order dual variational problems with natural bound-
ary values rather than fixed end points and indicated their
close relationship with those of corresponding (static)
second-order duality results established for nonlinear pro-
gramming problem with support functions, considered by
Husain et al. [7]. The popularity of this type of nondif-
ferentiable continuous programming problems seems to

Copyright © 2013 SciRes.

originate from the fact that, even though the objective
function and/or constraint functions are non-smooth, a
simple representation of the dual problem may be written.
The theory of non-smooth mathematical programming
deals with more general type of functions by means of
generalized subdifferentials. However, square root of posi-
tive semi-definite quadratic form and support functions
are amongst few cases of the nondifferentiable functions
for which one can write down the subdifferentials explic-
itly.

In this paper, we formulate Mond-Weir type second-
order dual to the continuous programming containing sup-
port functions in order to further weaken the second-
order generalized invexity of [6]. Usual duality theorems
for this pair of Mond-Weir type second-order dual con-
tinuous programming problems are validated under gen-
eralized second-order invexity assumptions. Special cases
are derived. Further, a pair of Mond-Weir second-order
dual variational problems with natural boundary values
rather than fixed end points is presented and the proofs of
the duality theorems are claimed to follow analogously.
It is also pointed out that our second-order duality results
can be considered as dynamic generalizations of corre-
sponding (Static) second-order duality results established
for nonlinear programming problem with support func-
tions considered by Husain et al. [7].
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2. Pre-Requisites

Let | =[a,b] bearealinterval ¢:1xR"xR" - R and
w IxR"xR" — R™ be twice continuously differenti-
able functions. In order to consider ¢(t,x(t),x(t)),
where x:1 — R" is differentiable with derivative x
denoted by ¢, and ¢, the first order derivative of ¢
with respectto x(t) and x(t) respectively, thatis,

¢X=(a¢ o a¢j,¢xz(a¢ o a¢j_

Denote by ¢, the nxn Hessian matrix of ¢ and
v, the mxn Jacobian matrix respectively, that is,
with respectto x(t), that is,

¢ ). . .
by =| ——— i, ] =12,---,n w, the mxn Jacobian

ox'ox!
matrix.

o oy v
ot ox? ox"
oyt oyt oy

¥, =| oxt  ox? ox"
oy" oy"  oy"
oxt Xt X" Jinen

The symbols ¢,,4,,.4, and y, have analogous rep-
resentations. Designate by X the space of piecewise
smooth functions x:1 — R", with the norm
|x||= x|, +Dx|, where the differentiation operator D

t

is given by u=Dx< x(t):ju(s)ds , Thus %z D
a
except at discontinuities.

We incorporate the following definitions which needed
in the subsequent analysis:

Definitionl. (Second-Order Invex):

If there exists a vector function 7 =7(t,x,X)eR"
where 7:1xR"xR" - R" and with =0 att = a
and t = b such that for a scalar function ¢(t,x,x) the
functional _[¢(t,x, x)dt where ¢:1xR"xR" >R
satisfies |

I¢(t,x,x)dt—j{¢(t,7,?)—% p' (t)Gp(t)}dt

|
> j{ryTgéx (t.%,%)+(Dn)" ¢, (t,i,x*)ﬂfep(t)} dt.
|
Then f¢(t,x, x)dt is second-order invex with respect
|
to n where G =g, -2Dg, + DZ¢>‘<>‘< - D3¢>‘<x‘v

peC&I,R”), the space of n-dimensional continuous
vector functions.
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Definition 2. (Second-Order Pseudoinvex): If the func-
tional [4(t,x, X)dt satisfies
|

f{”T¢x +(Dn) ¢, +n"Gp(1) p(t)} dt>0

= [g(t,x X)dt zj{¢(t,x,x*)_% p(t) Gp(t)}dt.

Then jqﬁ(t,x,x)dt is said to be second-order pseu-
|

doinvex with respect to 7.
Definition 3. (Second-Order Strictly Pseudoinvex):

I the functional [4(t,x, X)dt satisfies
|

f{”T¢x +(Dn)' ¢, +f7TGp(t)} dt>0

|
— = l T
= t,x, x)dt > t,X,X)—=p(t) Gp(t);dt,
Jote)a [loft.5.5) -3 ple) Go()|
then jqﬁ(t,x,X)dt is said to be second-order strictly
|

pseudoinvex with respectto 7.
Definition 4. (Second-Order Quasi-invex):

If the functional [4(t,x, X)dt satisfies
|

[o(t.x,x)dt sj{qﬁ(t,xx*)_% p(t) Gp(t)}dt
= [{n"8+(Dn)' ¢,+n"G(1) p(t)jdt <0,
Then jqﬁ(t,x,x)dt is said to be second-order quasi-

invex with respect to 7.

Consider the following nondifferentiable continuous
programming problem with support functions treated by
Husain and Jabeen [8]:

(CP): Minimize [{f (t,x,%)+S(x(t)|K)}dt
subject to
x(a)=0=x(b), (@)
gj(t,x,x)+S(x(t)|Ci)£0,j=l,2,---,m,te|, )

where f and g are continuously differentiable and each
C’,(j=12,--,m) isacompactconvex setin R".

Husain and Jabeen [8] derived the following optimal-
ity condition for (CP):

Lemma 1. (Fritz-John Necessary Optimality Con-
ditions):

If the problem (CP) attains a minimum at x=X e X
then there exist r e R and piecewise smooth functions

y:1—>R™ with y(t)=('(t),¥* (1), 7" (1)),

AM



. HUSAIN

Z:1>R" and w':1 > R", j=1,2,---,m, such that
r[fx(t,f,x*)ﬁ(t)}riyi (O]9} (tx.X)+W ()]
j=1

J

=D rfy (LX.%)+ (1) g, (LX.X)], tel

-

S5 [’ (txi)+x(0) W (1) -0, te)
Y(t)Tf(t) _ S(Y(t)| K), tel

X(t) W (t)=s(X(1)C'), j=12m, tel

>

Z(t)eK,w! (t)eC’, j=12,--,m, tel
(r.y(t))=0, tel

(r.y(t))=0, tel

The minimum X(t) of (CP) may be described as
normal if T =1, so that the Fritz John optimality condi-
tions reduce to Karush-Kuhn-Tucker optimality condi-
tions. It suffices for T =1 that Slater’s [8] condition
holds at X(t).

Now we review some well known facts about a sup-
port function for easy reference.

Let K be a compact set in R", then the support func-
tion of K is defined by

S(x(t)K)= max{x(t)Tv(t):v(t) eK,te I}.

A support function, being convex everywhere finite,
has a subdifferential in the sense of convex analysis i.e.,
there exist z(t)eR",tel such that

S(y()]K)-S(x(O)[K)=(y(t)-x(t)) z(t).
From [9], the subdifferential of S(x(t)|K) is given by
38 (x(1)|K) ={z(t) < Kt e I sueh thatx(1)" 2(t) =S (x(1)[K)}.

T

For any set I' = R", the normal cone to T' at a point
x(t)el isdefined by

N (x(1) = {y(t) e R" y(t)(2(t)=x(t)) <0, 2(t) e T}

It can be verified that for a compact convex set C,
y(t)e N (x(t)) ifand only if

s(y(®)|C)=x(t) y(t), tel.

3. Mond-Weir Type Second-Order Duality

In this section, we present the following problem as the
Mond-Weir type dual to (CP) and validate usual duality
theorems:

(M-WCD):
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Maximize!( f(t,u,u)+u(t) z(t)—% p(t)’ FP(t))dt

subject to

u(a)=0=u(b) 3)
f+2(t)+ 2y (1)) +w (1)

Z(t)eK,Wj(t)eCj,tel,j=l,2,~-~,m (6)
y(t)=0,tel )

where
1) p(t)eRn,tel
2) F=fuu—2Dfuu+D2fuu—D3fuu,teI

3) G=y(t) 9., -2D(y(1)’ gu)u
+D? (y(t)T guu)_ D3(Y(t)T guu)

Theorem 1. (Weak Duality): Let x(t)e X be fea-
sible solution of (CP) and

(U(8), ¥ (1), 2(0). 92 (£),W7 (6) - w" (1), p(1))
be feasible for (M-WCD). Assume that for all feasible

(X(2).0(1), Y(£),2(2). W (1) W (1), w" (1))
and with respect to vector function 7 =7(t,x,u),

1) j(f(t,.,.)+(.)Tz(t))dt is second-order pseudo-

invex and

2) ji(yj(t)g"(t,.,.)T+(.)TWj (t))dt is second-or-

1 J=1
der quasi-invex.
Then,

inf (CP)>sup (M-WCD).
Proof: Since x(t) is feasible for (CP) and
(u(8),y(t),z(t). W (t),w? (). w" (t), p(t))

is feasible of (M-WCD), we have

>y ()0 (txx)+5(x[c! ))at

;}I[[Jilyj<t)(gj<t,u,u)+u<tf o)

_% p(t)TGp(t)jdt
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w (t)<S(x(t)/C) ) tel, j=12m,

sj[(z y! (6)(0” (tu.)+u(t) w! (t))j
R0 Gp(t)jdt.

By the second-order quasi-invexity of

Zmljy" (t)(gj (t)+()" W (t))dt,

j=1
for w'(t)eR", j=12,-,
this we have,

[l (S0t ew )
+(0n)" (y" (1), )+n"Gp (1)} dt <.
By integrating by parts, we have
[l (S otetw)
~nD(y" (t)g,)+7n"Gp(t)}dt
+n(t)T(yT(t)gu)t=bso.
Using 7=0, at t=a and t=b, this yields,

t=a
W[iyj(t)(ghwj v)

=1

m with respect to 7, from

~D(y(t)" 9,)+Gp(t))dt <0
Using equality constraint (4), we have
Osj;f(f +2(t)-Df, +Fp(t))

= [(n" (1, +2(t)+(Dn)" £, +n"Fp(t))dt

+y :b>o (by integrating by part
n ol =0 y integrating by parts)

As earlier, this becomes
[(n" (£, +2(1))+(Dn)" £, +n"Fp(t))dt >0
|
This, because of second-order pseudoinvexity of
J(F(t)+() 2())dtz(t) eR"te 1 with respect to
|
n, gives

Copyright © 2013 SciRes.

'If(f(t,x,x)+x(t)Tz(t))dt
I( tu,u)+u( (t)—llo(t)T Fp(t)Jdt.

Since x(t)" z(t)<S(x(t)/K),tel, we have

j( t, %, %)+S(x(t)/ K))

zj( f(tbu0) +u(t) 2(0)- 2 p(t) Fp(t)jdt,
implying,
inf (CP)>sup(M-WCD).

Theorem 2. (Strong Duality):

If X(t)e X be an optimal solution of (CP) and is
normal, then there exist piecewise smooth functions
y:l >R™ z:1 >R" and w!:1 —>R" such that
(X(t),¥(t).Z(t), W (t),--@" (), p(t)=0) is a feasi-
ble solution of (CD) and the two objective values are
equal. Furthermore, if the hypothesis of Theorem1 holds,
then (X(t),¥(t),Z(t), W (t),-,@" (), p(t)) is an op-
timal solution of (M-WCD).

Proof: From Lemma 1 there exist piecewise smooth
functions y:1 >R™, Z:l>R" and W :1 >R"
(j=12,---,m) such that

X(t) W (t)=S(x(t)/C!), j=1,2,--m,tel

f(t)eKWJ()eCJ i=12,---mtel
y(t)=0tel
The above relations imply that
(X(t),y(t), Z(t), W' (t),---,W" (t),p(t)=0) is feasible
for (M-WCD).
Also

This shows the equality of objective functions of the
problem. Hence the optimality of
(X(t),¥(t). Z(t), W (t),--,W" (t), p(t)) for (M-WCD)

AM
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follows from weak duality theorem (Theorem1).
Theorem 3 (Strict Converse Duality): Assume that

(Cy): j(f(t +(.)Tz(t))dt is second-order strictly

pseudoinvex and .I[(gyj(t)(gj(t,.,.)+(.)ij (t))J is

second-order quasi-invex with respect to the same 7.

(C»): X(t) is an optimal solution for (CP), If
U,y,Z,W, W, -, W", p(t)) is optimal solution of (M-
WCD), then T(t)=X(t),tel.

Proof: We assume that U(t)=X(t) and show that a
contradiction follows. Since X(t) is an optimal solution
of (CP), it follows from Theorem 2, there exist
y:1->R", z:1 >R" and
w!:1 - R",(j=12,--,m) such that

(X(6),7(1), Z (1), % (), & (1), &" (t), p(t) =0)

is optimal solution of (M-WCD).
Since

(3 9(0).Z(1), & (1) % (1) . & (1) p(1)

is an optimal solution of (M-WCD), it follows that

!(f(t,i,x)+x() 2(1)) ot
_j[ (60.6)+ (1) (t)—%p(t)Fp(t))dt

This, because of the second-order strict pseudoinvexity
of j( 2(t))dt forall z(t)eR" gives

f{’f (f,+2(t)+(Dn)" 1, +77TFp(t)} dt<0  (8)

From the constraint of (CP) and (M-WCD), we have
(m I (t, %, %) +S( /C‘))]
f[ yl(t ( (t,u,d)+u(t)" w (t))

%p(t)T Gp(t)jdt

Using x(t) w! (t) <
from this, we have

s(x(t)/c’).tel,j=12,

Copyright © 2013 SciRes.
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This, because of (C,) we have
I{If (Z y' (t)(g! (tu,u)+w (t))j
j=1

+(Dn) (y7g, )+ (Gp(1))jdt <0

Combining (8) and (9), we have
0>_[{77T[fu+z(t)+iy’ (g0 +w'(t J
1 j=1

7" (F+G)p(t }

©)

Using =0, at t=aand t=b, this implies
jn {(f +z( +sz_:yj(t)(gj+wj(t))j
_D(fu.+y(t)Tgu)+(F+G)p(t)}dt<O,

contradicting the equality constraint of (M-WCD), hence

T(t)=x(t)tel.

Theorem 4. (Converse Duality): Assume that

(Hy): (x(t),y(t),z(t),vvl(t),wz(t),---,wm(t),p(t))
is an optimal solution of (M-WCD).

(H,): The vectors {F'.G'i=12,---,m! are linear
independent where F' ‘and G' are the i" row of F and
G respectively, and

(Ha):
>y (1)(gd+w! (1)) -D(y(1)" g,)+ G () p(t) %0,
tel

and

(H,): either .[ p(t)" (G +y(t) gxx) p(t)dt>0

and [ p(t)" 2y (t)(g] +w! (1))t 20

)" (G+Y(1) g5 p(t)dt <0

and | p(t)T%y" (t)(g) +w’ (t))dt<0

Then X(t) is feasible for (CP) and the two objective
functionals have the same value. Also, if Theorem1 holds
for all feasible solution of (CP) and (M-WCD), then
X(t) isan optimal solution of (CP).

or [pl(t
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Proof: Since O v (D) +»x(t)e N. (wi(t 14
(x(t),y(t),z(t),vvl(t),...,wm(t),p(t)) is an optimal )y () Cj( ()) =
solution of (M-WCD), by results of Schester [10], there
exists 7€ R,y eR and piecewise smooth function 7.[(
6:1 >R" and 7:1 > R™ such that following Fritz '

John optimality conditions are satisfied: (15)

. T(t)y(t)=0tel (16)

,n(t),y)=z0,te
+%D(p(t)T Fp(t), "DZ( ) (z.7(1),6(t),7) %0t el (18)
+%D3(p(t)T Fp(t)) ——D4( (t)'F (t)) } Using the hypothesis (H,) in (12), we have
T 9(t)+rp(t)=0, tel (19)
+0(t)'| £,-Dh, +(y(0) 9.) ~D(v(t) 9,) o)+ 10(1) -0t o0
‘D( fut(¥(0)' 0y ))* D(D( fa-(v()'9,), )) Using (4), (19) and (20) in (10), we have (see (21) below)
o () )-(F-c100) 8 e s ) cel )
—D((F+G)p(t))X+D2((F+G)p(t))X Consequently from (21), we have
—D3((F+G)p(t))_x_+D4((F +G)p(t)).i] (Zy ()( '( X, X)+w! (t))
+7{gyj(t)(9x"+Wj)—D(yT(t)9x) -D(y(t) gx.)+Gp(t))=0,teI
e 2ol ) il S Ry
(o o) SOl o), L), o v
—%D“(p(t)T Gp(t));}zo, ha\F/’(;e-multiplying (11) by y’(t) and Using (16), we
o(t) [(7 +w (1)) +91,p (1] 0| £y (e’ 1w (0) (0] 5. ) o)

+;/((gi +x(t)T w! (t))—%p(t)T ngxp(t)j (11) _7{ mo

+77j(t):0, tel

(6(t)+zp(t))F+(0(t)+rp(t))G=0tel (12) _% p(t)" (y(t)T gxx) p(t)j =0.
x(t)+0(t) e N, (z(1)) (13) Integrating and then using (15), we have

(21)

Copyright © 2013 SciRes. AM
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four |3

1 j=1

-2/ [{50) @000~ p(0] (5] 5 o0 e -0

v (0)(9) +w! (0)+(v (1) o) p(t)}dt

Putting &(t)=—yp(t) we have
—7,[ p(t)T [Zm: y! (t)(gxJ +w! (t))]dt

_glj (©)(G+y(t) g4)p(t)dt=0

gives

This, in view of the hypothesis (H,) yields,
p(t)=0,tel wehave X(t )eN (z(t)) and

()eN ( ())]— 2,--,m.

These respectlvely imply  x(t)" z(t) =S(x(t)/K)
and x(t)"wl (t)=S(x(t)/C’),j=1,2,

Multiplying the relation (11) by y’ () and using (16)
along with p(t)=0,te 1, we have

2yj(t)(g" +X(t)" w (t))zO,tel
and also g’ (LY, ')+s(x(t)/C")SO,t 1 implying the

X
feasibility of x(t) for (CP).
Finally,

f(1{x0) (R0
—I( (1x.5) X0 205 90 Fo(e) o

By Theorem 1, it implies that X(t) is an optimal so-
lution of (CP).

4. Special Cases

Let for tel, A(t),B'(t),j=12,--,m, be positive
semidefinite matrices and continuous on 1.

Then (x(t)" A(L)x(t)) =S (x(t)/K),tel, where
K={ADz(O)2(0) A@)z()<1te |
(x()" Bj(t)x(t))m =s(x(t)/cT), =12 mtel.

Replacing S(x(t)/K) by (x(t)T A(t)x(t))]/2 and

s(x(t)/C’), by

Copyright © 2013 SciRes.

mtel.

(x("8 (Ox() " i=12

We have the following problems:
1/
(CP,): Minimize j{f (tx %)+ (x(1)" A()x(1) Z}dt
|
subject to
x(a)=0=x(b),
12

g’ (tx%)+(x(1) B ()x(t)) <0,
tel,j=12,---,m.
(M-WCD,):

Maximize.!-( f(t,u,u)+u(t) A(t)z(t)

_% p(t)’ FP(t)jdt
subject to
u(a)=0=u(b),

f, (tu,u)+A(t)z(1)
2y (09! (Lu0) +8 (0w (1)
-D(f, (t,u,0)+y(t)" g, (t.u,u))+(F+G) p(t) =0,

tel

(S5 0fa T 200 0)

_%pT (t)Gp(t)jdtZO

2(t)" A(t)z(t) <1, tel

w! (t)BY (t)w

it (x(t) B (0)x(1)) =12

from the constraints of (CP,), we have the following
problem studied for duality by Husain and Srivastava [4].

(CP,): Minimize.lf( f(t, x,>‘<)+(x(t)T A(t)x(t))yzjdt

subject to

"(t)<itel, j=12,--,m

m are suppressed

x(a)=0=x(b)
g(t,x,x)<0tel.
(M-WCD):

AM
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Maximizelj( f(t.u, u)+u(t)T A(t)z(t)

_%p(t)T FP(t)Jdt
u(a)=0=u(b)
f, (t,u,u)+A(t)z(t)+y(t) g, (t,u,u)

_D( f, (tuu)+y(t) g, (t,u,u))

+(F+G)p(t)=0, tel

j(y(t)T o(tu0) 2 p(t) Gp(t)jdt S0 tel

z2(t) A(t)z(t) <L tel
y(t)=0,tel.

5. Problems with Natural Boundary Values

In this section, we formulate a pair of nondifferentiable
dual variational problems with natural boundary values
rather than fixed end points.
(CRy): Minimizej{f (t,x, >’<)+S(x(t)| K)} dt
subjectto x(a)=0%x(b),
g’ (tx%)+S(x(t)|C!)<0, tel, j=1,2
(M-wCD

o)
MaX|m|ze_I[{ (t,u,u) t)T z(t)

subject to

m

f, (tuu)+ z(t)T +yy! (t)(guJ (tu,u)+w (t))

—D( f, (tu,u)+y(t) g, (t,u,u))

+(F +G) p(t):O, tel
Hgyj ()’ (t.u.u)+u(t) w (1))
_%p(t)T Gp(t)}dtzo,tel

y(t)=0,tel

z(t)eK,w! (t)eCl, j=12,-,mtel

Copyright © 2013 SciRes.
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f,(tuu)=0att=aandt=bh,

y(t) g, (tu,u)=0,att=aand t=b.

6. Nonlinear Programming Problems

If all functions in the problems (CP,) and (M-WCDy) are
independent of t, then these problems will reduce to the
following nonlinear programming problems studied by
Husain et al. [7].

(CPy): Minimize f (x)+S(x|K)
subject to

g’ (x)+S(x|C?)<0,j=12--m

(CD,): Maximize f (u)+u'z —% p'Fp
subject to

fu(u)+z+zm:yj(glf(u)+wj)+(F +G)p=0

j=1

S i (el ey )
(jz_;y(g+uw)

1+
=p'Gp |20,
2p DJ

zeK,w eCl,j=1,2,---m
where F=f, (u) and G=y"g, (u).
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