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ABSTRACT 

Density estimation methods based on aggregating several estimators are described and compared over several simula- 
tion models. We show that aggregation gives rise in general to better estimators than simple methods like histograms or 
kernel density estimators. We suggest three new simple algorithms which aggregate histograms and compare very well 
to all the existing methods. 
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1. Introduction 

Ensemble learning or aggregation methods are among the 
most challenging recent approaches in statistical learning. 
In a supervised framework, the main goal is to estimate a 
function  using a data set of independent ob- 
servations of both variables x

:f X Y
X  and  Ensemble 

learning constructs several such estimates 1

yY.
, , Mg g

 1, , M

, 
which are often called weak learners, and combines them 
to obtain the aggregated model f g g g  
where g  may be a simple or a weighted average when 

 such as for regression, or a simple or a weighted 
majority voting rule when 

 Y
 , 1, JY   such as for 

classification. In this framework, Bagging ([1]), Boosting 
([2]), Stacking ([3]), and Random Forests ([4]) have been 
declared to be the best of the shelf classifiers achieving 
very high performances when tested over tens of various 
datasets selected from the machine learning benchmark. 
All these algorithms had been designed for supervised 
learning, and sometimes initially restricted to regression 
or binary classification. Several extensions are still under 
study: multivariate regression, multiclass learning, and 
adaptation to functional data or time series. 

Very few developments exist for ensemble learning in 
the unsupervised framework, clustering analysis and den- 
sity estimation. Our work concerns the latter case which 
may be seen as a fundamental problem in statistics. 
Among the latest developments, we found some exten- 
sions of Boosting ([2]) and Stacking ([5]) to density es- 
timation. The existing methods seem to be quite complex, 
often combining kernel density estimators and whose 

parameters seem to be arbitrary. In particular, most of the 
methods combine a fixed number of weak learners. 

In this paper we show extensive simulations that ag- 
gregation gives rise to effective better estimates than sim- 
ple classical density estimators. We suggest three simple 
algorithms for density estimation in the same spirit of 
bagging and stacking, where the weak learners are histo- 
grams. We compare our algorithms to several algorithms 
for density estimation, some of them are simple like His- 
togram and Kernel Density Estimators (Kde) and others 
rather complex like stacking and boosting, which will be 
described in details. As we will show in the experiments, 
although the accuracy of our algorithms is not system- 
atically higher than other ensemble methods, they are 
simpler, more intuitive and computationally less expen- 
sive. Up to our knowledge, the existing algorithms have 
never been compared over a common benchmark simula- 
tion data. 

Aggregating methods for density estimation are de- 
scribed in Section 2. Section 3 describes our algorithms. 
Simulations and results are given in Section 4 and con- 
cluding remarks and future work are described in Section 
5. 

2. A Review of the Existing Algorithms 

In this Section we review some density estimators ob- 
tained by aggregation. They may be classified in two ca- 
tegories depending on the aggregation form. 

The first type has the form of linear or convex combi- 
nation: 
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1

M

M m m
m

f x g


  x            (1) 

where m   and mg  is typically a parametric or non 
parametric density model, and in general different values 
of m refer typically to different parameters values in the 
parametric case or different kernels or different band- 
widths for a chosen kernel for the kernel density estima- 
tors. 

The second type of aggregation is multiplicative and is 
based on the ideas of high order bias reduction for kernel 
density estimation as in [6]. The aggregated density es- 
timator has the form: 

   
1

M

M m
m

mf x g


 x             (2) 

2.1. Linear or Convex Combination of Density 
Estimators 

This kind of estimators (1) has been used in several works 
with different construction schemes. 
 In [7-9] the weak learners mg  are introduced sequen- 

tially in the combination. At step m, mg  is a density 
selected among a fixed class H and is chosen to ma- 
ximize the log likelihood of 

         11 ,  m m mf x f x g x      0,1     (3) 

In [8], mg  is selected among a non parametric family 
of estimators, and in [7,9], it is taken to be a Gaussian 
density or a mixture of Gaussian densities whose para- 
meters are estimated. Different methods are used to esti- 
mate both density mg  and the mixture coefficient  . 

In [7], mg  is a Gaussian density and the log likelihood 
of (3) is maximized using a special version of Expecta- 
tion Maximization (EM) taking into account that a part of 
the mixture is known. 

The main idea underlying the algorithms given by [8,9] 
is to use Taylor expansion around the negative log like- 
lihood that we wish to minimize: 

     
 1

1

log log m i
m i m i

i i i m i

g x
f x f x

f x




       

where  1, , nx x T  is the data set. Thus, minimizing the 

left side term is equivalent to maximizing 
 
 1

m i

i m i

g x

f x
 ,  

and the output of this method converges to a global 
minimum. 

All the algorithms described above are sequential and 
the number of weak learners aggregated may be fixed by 
the user. 
 In [5], Smith and Wolpert used stacked density esti- 

mator applying the same aggregation scheme as in 
stacked regression and classification ([10]). The M 

densities estimators 1, , Mg g  are fixed in advance 
(KDE with different bandwidths). The data set 

 1, , nx x T  is divided into V cross validation sub- 
sets , ,L L . For 1, ,v V1 V   , denote L  .   \v

vL L
The M models 1, , Mg g  are fitted using the training 

samples  and the obtained estimates are 
denoted by for all 

 1 , ,L    VL 

1, ,m .M 

v

 These models are then 
evaluated over the test samples  getting the 
vectors 

1, , VL L
  v
mg L

n M
 for  put 

within a 
1, , ,  1,m M ,v   V

  block matrix: 

           
           

           

1 1 1
1 1 2 1 1

2 2 2
1 2 2 2 2

1 2

M

M

v v v
v v M v

g L g L g L

g L g L g L
A

g L g L g L

  

  

  

 
 
 

  
 
 
 




   



 

This matrix is used to compute the coefficients 

1, , M   of the aggregated model (1) using the EM al- 
gorithm. Finally, for the output model, we re-estimate the 
individual densities 1, , Mg g  from the whole data. 

This method has been compared with other algorithms 
including the best single model obtained by cross-vali- 
dation, the best single model obtained over a test sample 
and a uniform average of the different Kde models. It is 
shown that stacking outperforms these methods for dif- 
ferent criteria: log likelihood, L1 and L2 performance mea- 
sures (for the two last criteria use the true density). 
 In [11], Rigollet and Tsybakov fixed the densities 

1, , Mg g  in advance like for stacking (Kde estima- 
tors with different bandwidths). The dataset is split in 
two parts. The first sample is used to estimate the den- 
sities mg , whereas the coefficients m  are optimiz- 
ed using the second sample. The splitting process is 
repeated and the aggregated estimators for each data 
split are averaged. The final model has the form 

   1 s
M

s S
Mf x g

S 

  x

s
m

            (4) 

where S is the set of all the splits used and 

   
1

ˆ
M

s
M m

m

g x g


  x              (5) 

is the aggregated estimator obtained from one split s of 
the data, ˆ s

mg  is the individual kernel density function es- 
timated over the learning sample obtained from the split s. 
This algorithm is called AggPure. The authors compared 
their algorithm using different choices for the Kde’s 
bandwidth that we describe in the simulations section. 
Oracle inequalities and risk bounds are given for this es- 
timator. 

2.2. Multiplicative Aggregation 

The only algorithm giving rise to this form of aggrega- 
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tion is the one described in [12] called BoostKde. It is a 
sequential algorithm where at each step m the weak lear- 
ner is computed as follows: 

   
1

ˆ
n

m i
m

i

w i x x
g x K

h h

 
 

 
           (6) 

where K is a fixed kernel, h its bandwidth, and  mw i  the 
weight of observation i at step m. Like for boosting, the 
weight of each observation is updated by 

     
   1

ˆ
log

ˆ
m i

m m i
m i

g x
w i w i

g x
 

 
 

 



       (7) 

where      
ˆ i ji m

m i
j i

x xw i
g x K

h h




 
  

 
  

The output is given by 

   
1

ˆ
M

M
m

mf x C g x


               (8) 

where C is a normalization constant. 
Using several simulation models the authors explore 

different values for the bandwidth h minimizing the 
Mean integrated Square Error (MISE) for few values of 
M. They show that a bias reduction is obtained for M = 2 
but it is not clear how the algorithm behaves for more 
than two steps. 

3. Aggregating Histograms 

We suggest three new density estimators obtained by li- 
near combination like in (1), all of them use histograms 
as weak learners. The first two algorithms aggregate ran- 
domized histograms and may be parallelized. The third 
one is just an adaptation of Stacking using histograms in- 
stead of kernel density estimators. 

The first algorithm is similar to Bagging ([1]). Given a 
data set  1, , nx x T

, M
 and an integer L, at each step 

 of the algorithm a bootstrap sample of T is 
generated and used to construct an histogram m

1,m  
g  with L 

equally spaced breakpoints. The output of this method is 
an average of the M histograms. We will refer to this 
algorithm as BagHist and it is detailed in Figure 1. 

The second algorithm, AggregHist, works as follows. 
Consider the data set  1, , nx x T  and an integer L. 
 

 1. Let T the original sample and L an integer. 
2. For 1, ,m M  : 

a Let Tm be a booststrap sample of T. 

b Set mg to be the histogram constructed over Tm 

with L equispaced breakpoints. 

3. Output:    
1

M

M m m
m

f x g x


  

 

0g  
ed 

be the histogram obtained over T using

Figure 1. Bagging histograms (BagHist). 

Let  equally 
spac breakpoints denoted by  , ,1 LB b b  . We de- 
note by 1l lh b b    for all  l L andwidth 
of 0

2, ,  the b
g . A p 1,m Mt each ste ,  add a random 

uni  noise 
 we 

form  ,l m U  ach breakpoint and 
construct an hist

0,
 m

h  to e
ogram g  

tp
using T and the new set of 

breakpoints. The final ou ut is an average of the histo- 
grams 1, , Mg g . The algorithm is detailed in Figure 2. 

The e parameter L used for AggregHist and value of th
Ba

alled StackHist 
w

resent the simulations we have done 

4.1. Models Used for the Simulations 

ve referenced 

gHist will be optimized and the procedure used for 
that will be described in the next Section. 

Finally, we introduce a third algorithm c
here we replace in the stacking algorithm the six kernel 

density estimators by histograms with different number 
of breakpoints. 

4. Experiments 

In this Section we p
to compare all the methods described in Section 2 toge- 
ther with our three algorithms. We consider several data 
generating models we have found in the literature. We 
first show how our algorithms adjust quite well for the 
different models, and that the adjustment error decreases 
monotonically with the numbers of histograms used. Fi- 
nally we will compare our methods with ensemble me- 
thods for density estimation like Stacking, AggPure, 
BoostKde which aggregated non parametric density es- 
timators. All these aggregating methods are compared to 
optimized Histogram (Hist) and Kde using different band- 
width optimization approaches. 

Twelve models found in the papers we ha
are used in our simulations. We denote them by M1,···, 
M12 and we group them according to their difficulty level. 
 Some standard densities used in [11,12]: 

(M1) standard Gaussian density )1,0(N , 
(M2) standard exponential density, 
(M3) a Chisquare density 2

10 , 
 
 1. Let T the original sample, fix an integer L and construct the 

histogram 0g  built over T,  1, , LB b b   the equally 

spaced breakpoints of 0g  and 1l lh b b   . 

2. For 1, ,m M  : 

a Consider  * *

1 , ,m

LB b b  the randomly modified set of 

breakpoints where  *

, ,,  ~ 0,l l l m l mb b U h    

b We compute ˆ
mg the  histogram over T using these new 

breakpoints. 

3. Output:    
1

M

M m m
m

f x g x


  

 

Figure 2. Aggregating histograms based on randomly per- 
turbed breakpoints (AggregHist). 
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 taken from [5,12]: 
(M4) a student density t4, and StackHist (blue curve) for n = 1000 observations and 

M = 150 histograms for the two first algorithms. A simple 
histogram is shown together with the three estimates. For 
StackHist we aggregate six histograms having 5, 10, 20, 
30, 40 and 50 equally spaced breakpoints and a ten fold 
cross validation is used. Both AggregHist and BagHist 
give more smooth estimators than StackHist. 

Some Gaussian mixtures 
(M5)    0.5 1,0.3 0.5 1,0.3N N  , 
(M6)     .25 3,0.5N  


 : 

ensity, 
 ighly inhomogeneous 

our study two simple models 

 ma- 
xi

eta density with parameters 2 and 5. 
e, and 

fo

 some models, the estimator ob- 
ta

0.25 3,0.5 0.5 0,1N N  0

(M7)      0.55 3,0.5 0.35 0,1 0.1 3,0.5N N N  
an mixtures used in [11] and taken from [13]Gaussi

(M8) the Claw density, 
(M9) the Smooth Comb d
(M10) is a mixture density with h

Figures 5 and 6 show the adjusted densities obtained 
from AggregHist and BagHist when increasing the num- 
ber M of histograms for model M7. smoothness as in [12] 

 Finally we include in 
4.2. Tuning the Algorithms known to be challenging for density estimators: 

(M11) a triangular density with support [0,1] and
mum at 1, 
(M12) the b
All the simulations are done with the  softwarR
r models M8 and M9 we use the benchden package. 

Figure 3 shows the shape of the densities we have used to 
generate the data sets. 

Figure 4 shows, for

We compare the following algorithms AggregHist, Bag- 
Hist, StackHist, Stacking, AggPure and BoostKde with 
some classical methods like Hist and Kde. 

For AggregHist and BagHist we fix the number of 
histograms to M = 200. The number of breakpoints is 
optimized testing different values over a fixed grid of 10, 
20 and 50 equally spaced breakpoints. The optimal value 
retained for each model is the one which maximizes the 
log likelihood over 100 independent test samples drawn ined using AggregHist (red curve), BagHist (green curve)  

 

 

Figure 3. Densities used for the simulations. 
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Figure 4. Density estimators obtained used for Hist, AggregHist (red curve), BagHist (green curve) and StackHist (blue curve) 
for 6 models among those used in the simulations. 
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Figure 5. Density estimate given by AggregHist with different values of M for model M7. 
 

 

Figure 6. Density estimate given by BagHist with different values of M for model M7.  
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om the correspon

ha

mators are aggre- 

 aggre- 

 use 5 steps for the algorithm ag- 

some 
co

ble 1. Optimal number of breakpoints used for Hist and 

fr ding model. We optimize the number  the Silverman’s rules of thumb ([14]) using factor 1.06 
N  an act 0. rd

. 

The performance of each estimator is evaluated using the 
d Squared Error (MISE): 

(Kde rd) d f or 9 (KdeN 0), of breakpoints of the histogram in the same way as for 
our algorithms. These optimal values are given in Table 
1 for differents values of n (100, 500 and 1000). We 
denote the optimal number of breakpoints LH, LBH and 
LAH for Hist, BagHist and AggregHist respectively. 

To make the comparisons as faithful as possible

 the unbiased cross-validation rule (KdeUCV, [15]), 
 the Sheater Johns plug-in method (KdeSJ, [16,17]). 

These choices are described in details in the appendix

4.3. Results , we 
ve used for the other methods the same values sug- 

gested by their corresponding authors: 
 For Stacking, six kernel density esti

Mean Integrate

      
2ˆ ˆ dMISE f x E f x f x x             (9) gated, three of them use Gaussian kernels with fixed 

bandwidths h = 0.1, 0.2, 0.3 and the others use train- 
gular kernels with bandwidths h = 0.1, 0.2, 0.3. The 
number of cross validation samples is V = 10. 

 For AggPure six kernel density estimators are

f̂fwhere is the true density and  its estimate. It is 
com  the average of th squaputed as e integrated red error 

     ˆ ˆ d
2

ISE f x f x f x x             (10) 

over 100 Monte Carlo simulations. 
gated having bandwidths 0.001, 0.005, 0.01, 0.05, 0.1 
and 0.5. Instead of the quadratic algorithm used by the 
authors in [11], we optimize the coefficients of the 
linear combination with the EM algorithm. The final 
estimator is a mean over |S| = 10 random splits of the 
original data set. 

 For BoostKde, we

For the same simulations, we have als
imization is equiva- 

on

o computed the 
log likelihood criterion whose max
lent to reducing the Kullback-Leibler divergence between 
the true and the estimated densities (see P. Hall, “On Kull- 
back-Leibler loss and density estimation”, Ann. Stat., Vol. 
15, 1987). The results obtained using this criterion are 
unstable due to numerical approximation of the log like- 
lihood for small values of the densities. In particular the 
histogram has very good performance with respect to the 
log likelihood when compared to all the other methods. 
This is due to the fact that when computing the log like- 
lihood we omit the points i for which  ˆ

if x  equals zero, 
and such points appear much more for the histogram than 
for the other methods. For all these reas s we do not 
report these results. 

Figure 7 shows how the MISE varies when increasing 
the number of histograms in AggregHist and BagHist. For 
all

gregating kernel density estimators whose bandwidths 
are optimized using Silverman rule of thumbs (see 
Appendix). Normalization of the output is done using 
numerical integration. Extensive simulations we have 
done using BoostKde showed that more steps give rise 
to less accurate estimators and unstable results. 

For Kde we use a standard gaussian kernel and 
mmon data driven bandwidth selectors: 

 
Ta
our algorithms for each model and for each value of n. 

n = 100 n = 500 n = 1000 
 the models, the adjustment error decreases significant- 

ly for the first 100 iterations. In most of the cases Ag- 
gregHist gives a better estimate than BagHist. 

Table 2 shows the execution time for AggregHist, 
BagHist, Stacking and AggPure for n = 2000. The other 
alg

Model 
LH AH LH AH LH AHLBH L LBH L LBH L

M1 50 50 10 50 10 10 50 20 10

M2 50 50 50 50 50 50 50 50 50

M3 50 50 10 50 50 20 50 50 20

M4 50 50 20 50 50 50 50 50 50

M5 50 50 10 50 50 20 50 50 20

M6 50 10 10 20 20 20 20 20 20

M7 50 10 10 50 20 20 50 20 20

M8 50 50 50 50 50 50 50 50 50

M9 50 50 20 50 50 50 50 50 50

M10 50 50 50 50 50 50 50 50 50

M11 50 10 10 10 10 10 20 20 10

M12 50 10 10 20 20 10 20 20 20

orithms need much less time as they combine very 
few simple estimators and do not use any resampling. 
Computing time is significantly lower for our algorithms. 

We compare now all the algorithms cited above over 
the twelve models using n = 100, n = 500 and n = 1000. 
Fo AggregHist BagHist M = r  and  we use 200 histograms. 
Tables 3 to 5 summarize the results for each value of n = 
100, 500 and 1000. For each model and each method we 
give the average of 100 × MISE over 100 Monte Carlo 
simulations. For the Kde we kept the best result among 
the four choices of bandwidth selectors (nrd, nrd0, ucv 
and sj), the best choice being between brackets. The best 
result for each simulation model is put in bold. 

It is clear that no method outperforms all the others in 
all the cases and for all the methods the error decreases   



M. BOUREL, B. GHATTAS 351

  

 

Figure 7. MISE error versus number of aggregated histograms in AggregHist and BagHist for models 1 to 12. 
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Table 2. Time (in seconds) elapsed for each model for AggregHist, BagHist, Stacking and AggPure taking n = 2000 and M = 
50. 

Model AggregHist BagHist Stacking AggPure 

M1 18.3 19.6 22.3 161.4 

M2 20.3 19.2 24.6 168.6 

M3 17.4 17.6 27.7 160.2 

M4 20.3 19.3 28.3 177.6 

M5 19.1 20.5 31.8 177.6 

M6 20.0 18.0 25.3 165 

M7 20.1 19.6 27.7 163.2 

M8 19.6 20.2 25.1 166.8 

M9 18.8 20.4 25.3 170.4 

M10 18.5 19.6 24.5 163.8 

M11 20.0 19.8 25.1 175.8 

M12 20.0 19.2 20.8 160.8 

 
Table 3. 100 × MISE with n = 100 and M = 200. 

Model Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist 

M1 2.94 0.18(nrd0) 0.268 0.546 0.441 0.407 2.33 0.268 

M2 5.06 4.24(ucv) 2.35 1.48 8.19 2.58 4.38 3.31 

M3 0.15 0.0103(nrd) 0.0612 0.0301 0.0306 0.0995 0.118 0.0148 

M4 1.41 0.189(nrd0) 0.211 0.389 1.29 0.366 1.15 0.301 

M5 6.72 3.02(ucv) 0.897 1.9 0.515 1.09 5.18 0.757 

M6 0.843 0.156(ucv) 0.112 0.18 0.114 0.166 0.137 0.114 

M7 1.3 0.542(ucv) 0.196 0.413 0.262 0.233 0.303 0.31 

M8 3.99 2.16(ucv) 1.51 1.7 3.19 1.82 3.07 2.26 

M9 2.51 1.35(ucv) 0.933 1.14 1.34 0.97 1.97 0.841 

M10 6.24 6.72(nrd0) 5.76 5.79 6.21 5.22 4.91 4.79 

M11 18.6 2.2(nrd0) 1.22 2.75 1.87 1.3 2.48 1.75 

M12 133 58.1(nrd0) 8.67 21.3 16.6 12.9 18.4 13.8 

 
Table 4. 100 × MISE with n = 500 and M = 200. 

Model Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist 

M1 0.46 0.0839(nrd0) 0.0536 0.16 0.131 0.0825 0.085 0.05 

M2 0.742 3.01(ucv) 1.25 0.605 6.6 1.41 0.684 0.477 

M3 0.0241 0.00292(nrd) 0.0121 0.009 0.0192 0.0194 0.0185 0.00502 

M4 0.182 0.091(nrd0) 0.042 0.113 1.57 0.0576 0.131 0.0861 

M5 1.26 2.01(ucv) 0.219 0.57 0.107 0.41 0.916 0.231 

M6 0.073 0.0843(ucv) 0.0311 0.0624 0.022 0.0329 0.0448 0.0294 

M7 0.231 0.313(ucv) 0.0734 0.142 0.0368 0.0694 0.115 0.0675 

M8 0.933 1.78(ucv) 0.603 0.707 2.13 0.765 0.606 0.485 

M9 0.625 0.89(ucv) 0.403 0.449 1.06 0.449 0.507 0.379 

M10 4.8 6.12(ucv) 4.47 4.94 5.43 2.79 4.3 4.13 

M11 0.856 1.49(nrd0) 0.444 0.902 0.505 0.6 0.66 0.367 

M12 9.46 40(ucv) 2.11 6.79 4.6 3.43 7.22 2.65 
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odel Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist 

Table 5. 100 × MISE with n = 1000 and M = 200. 

M

M1 216 0.069 0.0364 0. 0.076 0.0663 59  0. 4(nrd0) 089 0.0407 0.03

M2 0.378 2.49(uc 0.864 0.3 6 8 0.333 21 

M3 0.0112 0.00178( 0.00614 0.00 0.0183 71 0.0085 2 

M4 0.0893 0.0748(nr 0.0285 0.07 1.44 5 0.0557  

M5 0.627 1.69(ucv) 0.155 0.349 0.0674  0.445 152 

M6 0.0535 0.0662(u 0.0218 0.04 0.0124 1 0.0321 .0203 

M7 0.137 0.227(uc 0.0381 0.0 0.0198 1 0.0835  

M8 0.607 1.69(uc 0.37 0.5 1.54 2 0.337 299 

M9 0.393 0.753(uc 0.277 0.3 0.889 9 0.32 259 

M10 4.76 5.57(uc 4.09 4.7 5.39  4.44 4.16 

M11 0.681 1.19(nrd 0.268 0.5 0.302 1 0.531 202 

M12 4.99 32.7(ucv) 1.28 4.23 2.67 2.14 3.7 2.3 

v) 65 0.91 0.

nrd) 556 0.009 0.0025

d0) 16 0.031 0.0381

  0.271 0.

cv) 26 0.022 0

v) 84 0.040 0.0453

v) 22 0.48 0.

v) 21 0.29 0.

v) 8 1.97

0) 44 0.38 0.

 
w rea he samp ze. Ense ethod
timators outperform largely the Hist and Kde in most 
cases except e mod ard ga ,

hen inc sing t le si mble m s es- 

 thre els (stand ussian  2
10  

ly the 
and 

stud distr ons) f 100, anent ibuti or n = d on 2
10  

model for n 0 an r the n
mo Boo  give  result the lar
valu of n  and acking s 
othe gorith he st nd the t ular dist
but  for 00. F M10, A e achie
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leng  distri ns used s M8 to . 

5. Conclusion 

In this paper we have given a brie
existing approaches for density estimation based on ag- 
gr  shown  a wide  sim
tion at, lik super g, en method
giv e to density rs than ra
and Ker ty Among t xistin
me s we teste tensio stacki
(Sta g) an oostin ) as w  the mo
recent approa und in ure call ure. 

W ve a ggest w alg s amo
whi wo o  Bag reg mbine
larg mber istogram t random the data 
usin str ples w ggregH  the or
gin ata s domizi istogra akpoint
AggregHist gi very go s for mo the situ
tion pecia r large izes, an s easy 
implement and has the lowest computation cost among 

all t ble d tima
Most of the presented algorithms may be extended to 

the m riate ca  are no der stud  em- 
pirically and theor ly. All imulation d the 
meth ve bee ement thin an age 
availa pon requ
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Appendix 

Different Choices for the Ban
KDE 

dwidth Selection in 

If  1, , nx x T denotes a sample obtained from a ran- 
dom variable X with density f, the kernel density estima- 
tion of f at point x is: 

 
1

1ˆ
n

i
h

i

x x
f x K

nh h

   
 

           (11) 

where K is a kernel function. 
A usual measure of the difference of the estimate den- 

sity and the true density is the Mean integrated Sq
Error (MISE) which may be written as: 

uared 

    2ˆ ˆBias

ˆ

h h

  Va

d

r dh

MISE f f x x

f x x
It is well known 
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ith  and  where w  0h   nh     2 dR g g x x    

nd a    2
2 dK x K x x    

ed Squared Error (AMI
The Asymptotic Mean Inte- 

rat SE) is: g

       
4

2
2

1ˆ
4h

h
AMISE f R K K R f

nh
       (13) 

nd it is minimized for a

 
   

1 5

* 1
2
2

R K
h n

K R f
 

    
 5            (14) 

Taking Gaussian kernel K and assuming that the un- 
erlying distribution is normal, Silverman ([14]) showed 
at the expression of  is 

d
th *h

1 5ˆ1.06min ,
IQR

h n           
1.34NRD

 

where ˆ

     (15) 

  and IQR are the standard deviation and the 
interquantile distance respectively of the sample. This is 
known as Silverman’s rule of thumbs. Furthermore Sil- 
verman recommended to use for the constant the values 
0.9 (Nrd0) or 1.06 (Nrd). 

Another choice of the bandwidth is given by the cross 
validation method ([15]). Here we consider the Integrated 
squared error (ISE) which is given by 

  2 2ˆ ˆ ˆ2h h hISE f f f f f            (16) 

Observe that the last term does not involve h. The least 
squares cross-validation is 

     2

1

2 n

h h i
i

LCSV h f f x
n 

    ˆ ˆ i      (17) 

where  ˆ i
hf
  denotes the kernel estimator constructed 

from the data without the observation i. In [17], it is prov- 
ed rewriting 

 2
2

1 1

1ˆ d
n n

j i
h

i j

x x
f x x K K

hn h  

 
   

 
     (18) 

where * denotes the convolution, that  LSCV h  is an  

estimator of   2ˆ
hISE f f  . 

 

Moreover it is easy to veri- 

fy that  CSV h MIS    2ˆ dhE L E f f x x   , thus the  

least squares cross-validation is also called unbiased cross- 
validation. We denote by the value of h which mi- 
nimizes 

 ucvh  
 LSCV h . 

, the plugFinally -in me of Sheather and Jones re- 
places the unknown 

thod 
 R f  used in the optimal value of  

h by an estimator   ˆ
g hR f   where g is a “pilot bandwidth” 

which depends on h (see [16-18] for more details). 

 

Copyright © 2013 SciRes.                                                                                  OJS 


