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ABSTRACT 

A hybrid method of the Polak-Ribière-Polyak 
(PRP) method and the Wei-Yao-Liu (WYL) method 
is proposed for unconstrained optimization pro- 
blems, which possesses the following proper-
ties: i) This method inherits an important prop-
erty of the well known PRP method: the ten-
dency to turn towards the steepest descent di-
rection if a small step is generated away from 
the solution, preventing a sequence of tiny 
steps from happening; ii) The scalar 0kβ   
holds automatically; iii) The global convergence 
with some line search rule is established for 
nonconvex functions. Numerical results show 
that the method is effective for the test prob-
lems. 

Keywords: Line Search; Unconstrained       
Optimization; Conjugate Gradient Method;    
Global Convergence 

1. INTRODUCTION 

We are interested to consider the unconstrained opti-
mization problem 

 min ,
nx

f x


               (1.1) 

where : nf    is continuously differentiable. It is 
well known that there are many methods for solving 
optimization problems (see [24,26,28-32,34] etc.), where 
the conjugate gradient(CG) method is a powerful line 
search method because of its simplicity and its very low 
memory requirement, especially for the large scale opti-
mization problems [22,23,27], which can avoid, like 
steepest descent method, the computation and storage of 
some matrices associated with the Hessian of objective 
functions. The following iterative formula is often used 
by the nonlinear CG method 

1 , 0,1, 2,k k k kx x d k            (1.2) 

for (1.1), where kx  is the current iterate point, 0k   
is a steplength, and kd  is the search direction designed 
by 

1,   if   k 1
,

,                 if   k = 0 
k k k

k
k

g d
d

g

   
 

     (1.3) 

where k   is a scalar which determines the differ-
ent conjugate gradient methods [4,5,8,9,12,13,15,16,18, 
20,21,25,33] etc., and kg  is the gradient of ( )f x  at 
the point kx . The well-known formula for k  from the 
computation point of view is the following PRP method 

 1 1

2
,

T
k k kPRP

k

k

g g g

g
   

           (1.4) 

where kg  and 1kg   are the gradients  kf x and 
 1kf x   of ( )f x  at the point kx  and 1kx  , respec-

tively, and   denotes the Euclidian norm of vectors. 
Throughout this paper, we also denote  kf x  by kf . 
Polak and Ribèire [18] proved that this method with the 
exact line search is globally convergent when the objec-
tive function is convex. Powell [19] gave a counter ex-
ample to show that there exist nonconvex functions on 
which the PRP method does not converge globally even 
the exact line search is used. He suggested that k  
should not be less than zero. Considering this suggestion, 
Gilbert and Nocedal [10] proved that the modified PRP 
method  max 0, PRP

k k    is globally convergent 
with the weak Wolfe-Powell (WWP) line search tech-
nique and the assumption of sufficient descent condition. 
However, the global convergence of the PRP method is 
still open under the WWP line search rule. 

Recently, Wei, Yao, and Liu(WYL) [21] propose a 
new conjugate gradient formula 

1
1 1

2

kT
k k k

kWYL
k

k

g
g g g

g

g



 

 
  

        (1.5) 

It is not difficult to deduce that 
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is true. The numerical results show that this method is 
competitive to the PRP method for the test problems of 
[17]. Under the sufficient descent condition, this method 
is globally convergent with the WWP line search. 

These observations make us know that the sufficient 
descent condition 

2
, 0T

k k kg d c g c    is a constant holds for all 0k   

(1.6) 

is very important to ensure the global convergence 
[1,2,10,14], and the scalar 0k   also plays a very 
important role [10,19]. This motivates us to propose a 
hybrid method combining the PRP method and the 
WYL method. The hybrid method will possess some 
better properties of the PRP method and the WYL 
method: (i) the tendency to turn towards the steepest 
descent direction if a small step is generated away from 
the solution, preventing a sequence of tiny steps from 
happening; (ii) The scalar 0k   holds automatically. 
The global convergence with the WWP line search of 
the presented method is established for nonconvex ob-
jective function. Numerical results show that this given 
method is competitive to the PRP method and the WYL 
method. 

This paper is organized as follows. In the next section, 
the algorithm is stated. The global convergence is 
proved in Section 3, and the numerical results are re-
ported in Section 4. The last section gives one conclu-
sion. 

2. ALGORITHM 

Now we describe the given algorithm as follows. Here 
we call it Algorithm 1. 

Algorithm 1 (The hybrid algorithm of the PRP 
method and the WYL method) 

Step 0: Choose an initial point  0 , 0,1 .nx    
Set  0 0 0 ,  : 0.d g f x k      

Step 1: If ,kg   then stop; Otherwise go to the 
next step. 

Step 2: Compute step size k  by some line search 
rules. 

Step 3: Let 1 .k k k kx x d    If 1 ,kg    then 
stop. 

Step 4: Calculate the search direction 

1 1 ,P W
k k k kd g d 
           (2.1) 

where  max , .P W PRP WYL
k k k     

Step 5: Set : 1k k  , and go to Step 2. 

Remark i) If 1 ,k kx x   we have 1k kg g   and 

1k kg g   which imply that 0,PRP
k   and 0,WYL

k   
which means that 0P W

k
   if a small step is gener-

ated for all 0k  . Thus the given method inherits the 
better property of the PRP method: the directions will 
turn out to be the steepest descent directions if the tiny 
steps from happening. 

ii) By the definition of the new formula ,P W
k
  we 

have 

 
2 1

1 1

2

max ,

           

         0

P W PRP WYL WYL
k k k k

k
k k k

k

k

g
g g g

g

g

   


 

 







 

3. THE GLOBAL CONVERGENCE 

The following assumptions are often needed to prove 
the convergence of the nonlinear conjugate gradient 
methods (see [5,9,10,20,21] etc.). 

Assumption 3.1 i) The function  f x  has a lower 
bound on the level set     0

nx f x f x    , 
where 0x  is a given point and   is bounded. 

ii) In an open convex set 0  that contains  , J is 
differentiable and its gradient g is Lipschitz continuous, 
namely, there exists a constants 0L   such that 

    0,  ,  .g x g y L x y x y        (3.1) 

3.1. The global Convergence with the Weak 
Wolfe-Powell Line Search 

The weak Wolfe-Powell (WWP) search rule is to find 
a step length k  such that 

  T
k k k k k k kf x d f g d            (3.2) 

and 

  ,
T T

k k k k kg x d d g              (3.3) 

where    0,1 2 ,  ,1 .     This line search tech-
nique is often used to study the convergence of conju-
gate gradient algorithms [6,27,34]. At present, the global 
convergence of the PRP method with the WWP line 
search is still open. 

Lemma 3.1 Suppose that Assumption 3.1 holds. Let 
the sequence  kg  and  kd  be generated by Algo-
rithm 1, 0,T

k kg d   and the stepsize k  be determined 
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by the WWP line search (3.2) and (3.3) Then the 
zoutendijk condition [34] 

 2

2
0

T
k k

k k

g d

d





                (3.4) 

holds. 
Proof. By (3.3) and Assumption 3.1 ii), we have 

    2

11 ,
TT

k k k k k k kg d g g d L d       

this means that   2
1 ,T

k k k kg d L d     which to-

gether with 0,T
k kg d   and (3.2) implies that 

   2

12

1
,

T
k k

k k

k

g d
f f

L d





   

summing up this inequality from 0k   to  , and us-
ing Assumption 3.1 i), we can obtain this lemma. This 
completes the proof. 

We will prove the global convergence of Algorithm 1 
by contradiction. Then we assume that there exists a 
positive constant 0   such that 

,  0.kg k                (3.5) 

Using (3.5) deduces a contradiction to obtain our con-
clusion. 

Similar to Lemma 3.3.1 in [6], based on Assumption 
3.1, Lemma 3.1, the fact 0,P W

k
   and (3.5), we can 

get the following lemma. 
Lemma 3.2 Let Assumption 3.1 hold and the se-

quences  kg  and  kd  be generated by Algorithm 1. 
The sufficient descent condition (1.6) holds, and the 
stepsize k  is determined by (3.2) and (3.3). Suppose 
that the inequalities (3.5) is true. Then we have 0kd   
and 

2

1
0

,k k
k

u u





    

where k
k

k

d
u

d
 . 

Proof. These two inequalities (1.6) and (3.5) imply 
that 0kd   is true, for otherwise 0,kg   then 

k k ku d d  is reasonable. Denote 

1
1

1 1

,  kP Wk
k k k

k k

dg
r

d d
  


 

    

By (2.1), for 0k  , we have 

1 1 ,k k k ku r u    

this combining with 1 1k ku u    shows that 

1 1 1k k k k k k kr u u u u           (3.6) 

The inequality 0P W
k
   implies that 0k   is true, 

then it follows that from (3.6) and triangular inequality 

   
1

1

1 1

1

1 1

2 .

k k

k k k k

k k k k k k

k

u u

u u

u u u u

r

 

 





 





   

   



         (3.7) 

By (1.6) and (3.4), we get 
4

2 21
1 12

0 11

k
k k

k kk

g
r g

d


 

 

     

Which together with (3.5), we obtain 
2

1
0

k
k

r 


   

By the above inequality and (3.7), we get this lemma. 
The proof is complete. 

The following property (*) was introduced by Gilbert 
and Nocedal [10], which pertains to the k

  under the 
sufficient descent condition. The WYL formula also has 
this property. Now we show that this property (*) per-
tains to our method. 

Property (*). Suppose that 

1 20 .kr g r                 (3.8) 

We say that the method has Property (*), if for all k , 
there exists constants 1b   and 0   such that 

k b   and 

1

2k ks
b

     

Lemma 3.3 Let Assumption 3.1 hold and the se-
quences  kg  and  kd  be generated by Algorithm 1. 
Then the new formula P W

k
  possesses property (*). 

Proof. The result of this lemma is proved by the fol-
lowing two cases. 

Case i: we consider PRP
k  By (3.1), we have 

  11 1

2 2

.
.

T
k kk k kPRP

k

k k

L g sg g g

g g
   

    (3.9) 

From Assumption 3.1 i), then there exists a constant 

1 0M   such that 

1.ks M                 (3.10) 

Let   2
2 1 1max 2, 1b Lr r M   and  2

1 22b L   , 

it follows that 

PRP
k b   

and 



X. R. Li et al. / Natural Science 3 (2011) 85-90 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

88 

1 2 2
2 2 2

1 1

. 2 2 1
.

2
k kPRP

k k

k

L g s L L
s

bg

 
 

 
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Then the PRP  formula PRP
k  has this property (*). 

Case ii: let us consider WYL
k . Denote 1k kY g   

1 ,k k kg g g  by (3.1), we get 

1
1

1
1

1 1

1 1

     

     

     

     2 ,

k
k k k

k

k
k k k k

k

k k k k

k k k k

k

g
Y g g

g

g
g g g g

g

g g g g

g g g g

L s







 

 

 

   

   

   



       (3.11) 

By (1.5), (3.11), (3.10) and (3.8) we have 

1 21
2 2 2

1

. 2
,

T
k k kWYL k k

k

k k

g Y L sg Y

g g





    (3.12) 

let   2
2 1 1max 2, 2b L M   and  2

1 22 2 ,b L    
it follows that (3.12) and the definition of b and   that 

1b   

2 2
2 4
1 1

2 2 1
,  and 

2
WYL WYL
k k k

L L
b s

b

 
  

 
   

      
   

 

Thus, the formula WYL
k also has the property (*). 

Using the definition of the  max ,P W WYL PRP
k k k    , 

we conclude that the formula P W
k
  possesses the 

property (*). The proof is complete. 
By Lemma 3.3, similar to Lemma 3.3.2 in [6], it is not 

difficult to prove the following result. Here we only state 
it as follows, but omit the proof. 

Lemma 3.4 (Lemma 3.3.2 in [6]) Let the sequences 
 kg  and  kd  be generated by Algorithm 1 and the 
conditions in Lemma 3.3 hold. If 0P W

k
   and has 

property (*), then there exists a constant 0   such 
that, for any N  and any index 0k  there is an in-
dex 0k k  satisfying 

, ,
2kk 

   

where  , : 1, ,k ik i N k i k s           N de-
notes the set of positive integers, and ,kk 

  denotes the 
numbers of elements in ,kk

 . 
Finally, by Lemma 3.2 and Lemma 3.4, we present 

the global convergence theorem of Algorithm 1 with the 
WWP line search. Similar to Theorem 3.3.3 in [6], it is 
not difficult to prove the result, here we also give the 
process of the proof. 

Theorem 3.1 Let the sequence  ,k kg d  be gener-

ated by Algorithm 1 with the weak Wolfe-Powell line 
search and the conditions in Lemma 3.3 hold. Then 
lim inf 0k kg  . 

Proof. We will get this theorem by contradiction. 
Suppose that (3.5) is true, then the conditions in Lemma 
3.2 and 3.3 hold. By Assumption 3.1 i), then there exists 
a constant 0 0   such that 

0 ,x x                 (3.13) 

We also denote ,i i iu d d  then for all integers 
 ,l k l k , we have 

 

1 1

1 1 1 1            .

l

l k i i
i k

l l

i k i k
i k i k

x x s u

s u u u

 


   
 

 

  



 
 

Taking the norm in both sides of the above equality, 
and using (3.13) we get 

1 0 1 1 12
l l

i i i k
i k i k

s s u u   
 

      

Let 08       be the smallest integer where   
does not less than 08  . By Lemma 3.2, there exists 
an index 0k  such that 

2

1

1

4i i
i k

u u


 
             (3.14) 

On the other hand, by Lemma 3.3, there exists 0k k  
satisfying 

, 2kk



                (3.15) 

For all  , 1i k k    , by Cauchy-Schwarz inequal-
ity and (3.14), we obtain 

 

1

1 1 1

1
1 1 22
2

1

1
1

2
2

                 

1 1
                  .

4 2

i

i k j j
j k

i

j j
j k

u u u u

i k u u



  







  

 
   

 

     



  

By the above inequality, (3.15) and (3.13), we have 
1

0 1 ,

1
2 ,

2 2 4

k

i k
i k

s k  


 



    

Thus 08 ,    this contradicts with the definition 
of .  Therefore, the conclusion of this theorem is right. 
This completes the proof. 

4. NUMERICAL RESULTS 

In this section, we report some numerical experiments. 
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The unconstrained optimization problems with the given 
initial points can be found at: 

www.ici.ro/camo/neculai/SCALCG/testuo.pdf, 

which were collected by Neculai Andrei. Since this new 
method is the hybrid method of the PRP method and the 
WYL method, we test Algorithm 1 with the WWP line 
search and compare its performance with those of the 
WYL [21] and the PRP [18] methods. The stop criteri-
ons are given below: we stop the program if the inequal-
ity  kg x   is satisfied or the inequality  

    1k kg x f x   

is satisfied, where 1.0 5.D    All the codes were 
written in Fortran and run on PC with 2.60 GHz CPU 
processor and 256 MB memory and Windows XP op-
eration system. In the experiments, the parameters were 
chosen as 1.0 2,  1.0 1D D     . The dimension 
of the test problems is from 500 to 5000. The detailed 
numerical results are listed on the web site 

http://210.36.18.9:8018/publication.asp?id=35392. 

In Figure 1, “WYL”, “PRP”, and “MPRP-WYL” 
stand for the WYL method, the PRP method, and the 
new method, respectively. 

Figure 1 shows the performance of these methods 
relative to the iterative number of the function and gra-
dient(NFN), which were evaluated using the profiles of 
Dolan and Moré [7]. It is easy to see that the 
MPRP-WYL is predominant among these three methods 
and the new method can solve about 99% of the test 
problems successfully. The PRP method is better than 
the WYL method for 1 1.2t   and the WYL method 
is better than the PRP method for 1.2 6t  . Moreover, 
the PRP method solves about 98% of the test problems 
and the WYL method solve about 99% of the test prob-
lems successfully, respectively. In a word, the given 
 

 

Figure 1. Performance profiles of conjugate gradient me- 
thods in Table 1 (NFN). 

method is competitive to the other two methods and the 
hybrid formula is notable. 

5. CONCLUSION 

This paper gives a hybrid conjugate gradient method 
for solving unconstrained optimization. The global con-
vergence for nonconvex functions with the WWP line 
search is established. The numerical results show that 
the given method is competitive to the other standard 
conjugate gradient methods for the test problems. 

For further research, we should study the convergence 
of the new algorithm under other line search rules. 
Moreover, more numerical experiments and testing en-
vironments (such that [3]) for large practical problems 
should be done in the future. 
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