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ABSTRACT 

The solutions of the Alhaidari formalism of the Dirac equation for the gravitational plus exponential potential have been 
presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues and the corresponding un-normal- 
ized eigenfunctions are obtained in terms of Laguerre polynomials. 
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1. Introduction 

The bound state solutions of the Dirac equation are only 
possible for some potentials of physical interest [1-5]. 
These solutions could be exact or approximate and they 
nornally contain all the necessary information for the 
quantum system. Quite recently, several authors have 
tried to solve the problem of obtaining exact or approxi- 
mate solutions of the Dirac equation for a number of 
special potentials using different methods [6-20]. Some 
of these potentials are known to play very important roles 
in many fields of Physics such as Molecular Physics, 
Solid State and Chemical Physics [21]. When a particle 
is in a strong potential field, the relativistic effects must 
be considered, leading to the relativistic quantum me- 
chanical description of such a particle [22-26]. In the re- 
lativistic limit, the particle’s motions are very often de- 
scribed using either the Klien-Gordon (KG) equation or 
the Dirac equation depending on the spin character of the 
particle [23,24]. The spin-zero particles like the mesons 
are satisfactorily described by the KG equation while the 
spin-half particles such as the electrons are described by 
the Dirac equation. It is therefore of interest in nuclear 
and high energy physics to obtain exact solutions of the 
KG and Dirac equations. 

The purpose of the present work is to present the solu- 
tion of the Alhaidari formalism of the Dirac equation [25] 
with the gravitational plus exponential potential (GEP) of 
the form: 

  e kzV z mgz                 (1) 

where  is the displacement, k  is the momentum,  
is the mass, 

z m
g  is gravitational acceleration and δ is an 

adjustable parameter. The GEP could be used to calculate 
the energy of a body falling under gravity from quantum 
mechanical point of view. Berberan-Santos et al. [22] 
have studied the motion of a particle in a gravitational 
field using the GEP without the exponential term. They 
obtained the classical and quantum mechanical position 
probability distribution function for the particle. Also 
quite recently, Ita and Ikeuba [27] have obtained the 
bound state solutions of the Klein-Gordon equation for 
the GEP using the parametric NU method. However, not 
much has been achieved in the area of solving the Dirac 
equation with GEP in the literature. 

2. The Dirac Equation 

The Dirac equation for the lower and upper spinor com- 
ponents can be written as [25]: 
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where  is the rest mass,  is the relativistic energy, 
and 

m E
 V r  is the vector potential. *Corresponding author. 
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where mc    and   is a real parameter. The “  ” 
designate the upper and lower components respectively. 

3. The Nikiforov-Uvarov Method 

The Nikiforov-Uvarov (NU) method is based on the so- 
lutions of a generalized second-order linear differential 
equation with special orthogonal functions [28]. The Sch- 
rodinger equation of the type as: 

      0r E V r r                 (4) 

can be solved by this method. This can be done by trans- 
forming Equation (2) into an equation of hypergeometric 
type with appropriate coordinate transformation  s s r  
to get 
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To find the exact solution to Equation (3), we write 
 s  as 

     s s s   .              (6) 

Substitution of Equation (6) into Equation (5) yields 
Equation (7) of hypergeometric type as 

          0.s s s s s                (7) 

In Equation (6), the wave function  s  is defined as 
the logarithmic derivative [29] 
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with  s  being at most first order polynomials. Also, 
the hypergeometric-type functions in Equation (7) for a 
fixed integer  is given by the Rodrigue relation as n
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where n  is the normalization constant and the weight 
function 

B
 s  must satisfy the condition 
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with 
     2s s s                 (11) 

In order to accomplish the condition imposed on the 
weight function  s  it is necessary that the polynomial 
 s  be equal to zero at some point of an interval  ,a b  

and its derivative at this interval at  will be 
negative [30]. That is 
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The function  s  and the parameter   required for 
the NU method are then defined as [31] 
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 .k s                              (14) 

The values in Equation (13) are possible to evaluate if 
the expression under the square-root be square of poly- 
nomials. This is possible if and only if its discriminant is 
zero. Therefore, the new eigenvalue equation becomes 
[29] 
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A comparison between Equations (14) and (15) yields 
the energy eigenvalues. 

Secondly, the parametric generalization of the NU me- 
thod is expressed by the generalized hypergeometric-type 
equation [32] 
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Equation (16) is solved by comparing it with Equation 
(5) and the following polynomials are obtained: 
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Now, substituting Equation (17) into Equation (13) 
gives 
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The resulting value of  in Equation (18) is obtained 
from the condition that the function under the square-root 
should be square of a polynomial and we get 

k

 7 3 8 82 2k c c c c c     9           (20) 

where 
2

9 3 7 2 8 6.c c c c c c               (21) 

The new  s  for k  becomes 
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k  value becomes 

 7 3 8 82 2k c c c c c     9 .         (23) 

Using Equation (11), we obtain 
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The physical condition for the bound state solution is 
0    and thus 

  3 9 3 82 2 0s c c c c       .       (25) 

With the aid of Equations (12) and (13), we obtain the 
energy equation as 
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The weight function  s  is obtained from Equation 
(10) as 
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 ,Pn
   are the Jacobi polynomials. The second part of 

the wave function is obtained from Equation (6) as 
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Thus the total wave function becomes 
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where Nn is the normalization constant. 

4. Solutions of the Dirac Equation 

The potential in Equation (1) can be written as 

  0e rV r r V    .             (33) 

where 0, , ,mg k z r V      . We can also write 

Equation (33) as 
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0 1V r r V r r      .        (34) 

On arranging Equation (34) we get our working poten- 
tial as 
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0 0V r V V r V r      0 .       (35) 

The potential of Equation (35) can be used to solve 
various quantum mechanical equations including the 
Schrodinger equation (SE), Klein-Gordon equation (KG) 
and Dirac equation using the NU method for their exact 
solutions. Writing Equation (32) with the GEP we get 
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Ignoring all terms of the form  with  in 
Equation (36) as these will not affect the physics of the 
calculations, we write Equation (36) as 
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where we have used 
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mation in Equation (36). 
Comparing Equation (37) with Equation (16) yields 

the following parameters 
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Other coefficients are determined as 
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From Equation (16) 
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From Equation (22) 
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The negative derivative of Equation (42) then becomes 
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The new  s  for the NU method is chosen as 

   1

1

2 4
s s 3

1      .        (44) 

For 

2

1
2

4
k 3 1  

    
 

.            (45) 

Now using Equations (24), (38) and (39) we obtain the 
energy spectrum of the GEP as 
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The weight function  s  is obtained from Equation 

(25) and the parameters of Equation (39) as 
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and using Equation (26) we get the wavefunction χn(s) as 
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polynomial. From Equation (28) the wave function is 
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The unnormalized wave function is then obtained from 
Equation (30) as 
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where  is the normalization constant. n

In addition, the corresponding lower-spinor wave func- 
tion is 
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5. Conclusion 

In summary, we have obtained the energy eigenvalues 
and the corresponding un-normalized wavefunction using 
the parametric NU method for the Dirac equation with 
the gravitational plus exponential potential. 
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