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ABSTRACT 

Childhood related diseases such as measles are characterised by short periodic outbreaks lasting about 2 weeks. This 
means therefore that the timescale at which such diseases operate is much shorter than the time scale of the human 
population dynamics. We analyse a compartmental model of the SIR type with periodic coefficients and different time 
scales for 1) disease dynamics and 2) human population dynamics. Interest is to determine the optimal vaccination 
strategy for such diseases. In a model with time scales, Singular Perturbation theory is used to determine stability condi- 
tion for the disease free state. The stability condition is here referred to as instantaneous stability condition, and implies 
vaccination is done only when an instantaneous threshold condition is met. We make a comparison of disease control 
using the instantaneous condition to two other scenarios: one where vaccination is done constantly over time (constant 
vaccination strategy) and another where vaccination is done when a periodic threshold condition is satisfied (orbital 
stability from Floquet theory). Results show that when time scales of the disease and human population match, we see a 
difference in the performance of the vaccination strategies and above all, both the two threshold strategies outperform a 
constant vaccination strategy. 
 
Keywords: Singular Perturbation Theory; Optimization; Vaccination Strategies 

1. Introduction 

Childhood related diseases such measles have an infec- 
tive period lasting two weeks on average [1]. This is in 
sharp contrast to human population dynamics, as the hu- 
man lifespan is on the average 50 - 60 years for the de- 
veloping countries and higher for developed countries. 
Most modeling work involving an analysis of childhood 
diseases using epidemiological models of the SIR type 
does not, however, take into consideration the possibility 
of different time scales for such diseases vis the human 
population dynamics or human resident times, for in- 
stance, students in school have an average of 6 months to 
one year resident time in school, time which they are in 
contact that can lead to higher spread of disease. 

We analyze SIR model with periodic vaccination and 
contact rates, but more importantly, with different time 
scales for disease and population dynamics. Periodicity is 
a common phenomenon for childhood diseases, due to 
the periodic nature of contacts as a result of school terms 

or even weather conditions. Weather affects the spread of 
diseases or disease vectors in different ways. High inci- 
dences have been reported for measles at the onset of 
rainy seasons [2].  

In a previous publication, we solely considered the 
SIR model as a system of ODE with periodic coefficients. 
We made no reference to time scales, in which case, we 
used Floquét theory and did orbital stability analysis of 
the disease free periodic orbit. We shall refer to the re- 
sults from Floquét theory as “orbital stability analysis” 
results, where the stability threshold condition is an av- 
erage quantity over one complete vaccination period. 

Analysis for ODE systems with time scales is done 
using singular perturbation theory. The stability threshold 
we obtained from singular perturbation theory gives an 
instantaneous function, unlike in the orbital case which 
gives an average condition over the whole period of vac- 
cination. In this respect, we refer to the stability results of 
singular perturbation as “instantaneous stability analy- 
sis.” 
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Optimal vaccination strategies are being studied wide- 
ly especially due to the challenges of few resources for 
the developing world, or even for better management of 
vaccination doses in the developed world [3-7]. A special 
case referred to as pulse vaccination strategy (PVS) has 
been addressed by authors such as Shulgin (e.g. [8]), 
d’Onofrio (e.g. [9]) among others. The concept of PVS 
addresses the idea of vaccination days. Authors such as 
Shulgin have compared PVS to the case of constant vac- 
cination strategy (CVS) where vaccination doses are 
spread randomly over time. The conjecture is that vacci- 
nation days enable better management of vaccination 
doses and allows immune booster for initial vaccine fail- 
ures. Furthermore, the theory of optimal control for age 
structured models has also been studied among others, 
[10,11]. 

In all these cases, the idea is to seek which vaccination 
strategies offer effective control of diseases with mini- 
mum costs. In so doing, key assumptions that make the 
model more realistic need to be taken into consideration. 
We make effort to study optimal vaccination strategy 
under such assumptions such as periodicity and different 
time scales for childhood related diseases. 

The paper is organized as follows: In Section 2, we in- 
troduce the model, its assumptions and the parameters. In 
Section 3, a brief overview of result from orbital stability 
analysis is given for the model defined in Section 2, for 
which no reference to time scales is made. In Section 4, 
we introduce the time scales. It turns out that the time 
scales are not clearly separated as required in the theory 
of singular perturbation, prompting a suitable transfor- 
mation of the original model. Stability results of a dis- 
ease free orbit along a defined “slow manifold” is done 
to obtain the required threshold condition for stability. 
We use the threshold condition to define the optimal con- 
trol problem. In Section 5, we introduce the set of func- 
tions called the susceptible population profiles in which 
we seek optimal solutions and by the properties of this 
set, we show that optimal solutions exist. We further char- 
acterize a candidate optimal control solution from this set 
of optimal solutions. In Section 6, we conduct simula- 
tions using measles related parameters and compare the 
results of orbital stability and instantaneous stability. 

2. Model and Assumptions 

We consider a large population that is well mixed like 
the children of several large schools located close to- 
gether. The following parameters are used: 

1) Contact rate  t : for    0,t L T 
  (the class 

of non-negative L  functions) and is also assumed to be 
bounded away from zero,   > 0t  ; 

2) Vaccination rate  t : for    0,t L T 
 ; 

3) The influx rate into the population, : 0b b  ;  
4) : 0    is the exit rate (which may be rather 

related to the exit from the population compartment un- 
der consideration than to mortality); 

5) : 0    the recovery rate; 
6) For comparison of the model with time scales that 

we hope to analyse in this paper and the previous pe- 
riodically driven model, we shall maintain the feature of 
periodicity of the coefficients  t , periodic with pe- 
riod T  and vaccination rate   ,t  periodic with pe- 
riod ˆ.T  However we adopt a common time period T 
such that 

ˆ;  , 0,1, 2,T lT mT l m    . 

The SIR-model reads, 
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        (1) 

We require that given a number of vaccination doses, 
the uninfected solution is stable against disease outbreak. 
We considered the stability analysis for model (1), which 
is a periodically driven ODE system, using Floquét 
theory. Implicitly, the time scale for both disease and hu- 
man population dynamics was assumed the same. We 
shall introduce time scales in model (1) and use singular 
perturbation theory for analyzing ODE systems with 
different time scales [12-14]. The theory of model (1) 
was considered in a preceding paper [15]. 

The total population        N t S t I t R t    is go- 
verned by the differential equation, 

   
d

d

N t
b N t

t
              (2) 

and thus, 

  .lim
t

N t b 


              (3) 

Proposition 1 For  0, ,  L T 
   a unique solution 

      ,0,S t R t   to the SIR model (1). Further- 
more, even for periodic coefficients, the model (1) is well 
posed. 

Proof. Well possedness of a standard SIR model has 
been extensively studied. For periodic driven system that 
we make reference to in this paper, refer to [15]. In 
Section 4, we make further comments on the well possed- 
ness of this model when time scales are introduced, on 
the invariant manifold   0.I t  □ 

3. Overview of the Model without Time  
Scales 

In [15], we assumed that the parameters  t  and 
 t  are periodic. Via Floquét theory, we obtained the 
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threshold for stability of the disease free solution, that is, 
in the presence of vaccination, there is no epidemic out- 
break if 0 < 1,VR  where 

      0 0

1
d

T

VR t S t t
T

 
 


          (4) 

Further, we assumed that vaccination targets the sus- 
ceptible population only. The vaccination coverage is 
therefore defined by the product of the vaccination rate 
and the size of susceptible population. 

      
0

: d .
T

C S S           

Define 0C  as the maximum amount of vaccination 
doeses available. We assume that the vaccination costs 
are subject to a constraint   0.C S C   

  This leads 
to formulation of an optimal control problem of the 
form. 

Problem 1 For  0,L T 
 , find the vaccination 

schedule that minimizes 

      
0

d
T

S        

defined from the 0 ,VR  under the cost constraint 
  0C S C   

  and the susceptible population is go- 
verned by the differential equation, 

             d
;  0 .

d
S b S t S S S T

t
           

We sought solutions of the optimal control problem 3 
in the set of susceptible population profiles 

     S t L  
    

rather than in the set    L  
    as would be the 

case in classical optimal control theory. This assumption 
was based on the fact that the disease affects the sus- 
ceptible population and we can understand much about 
the progression of the disease by studying the susceptible 
population [16]. An optimal vaccination strategy ensures 
that the number of susceptible individuals in a population 
is small, if not zero and on the other hand, the number of 
immune individuals should be large. 

There could be infinitely many optimal solutions in 
  that satisfy the ODE and the cost constraint. We 
characterize one such solution, that belongs to the closure 
of the set   and corresponds to the minimum of the 
functional 

       
0

d .
T

t t S t t     

After some considerations, the problem of minimizing 
the functional    was reformulated into a problem 
of maximizing the functional 

      exp d .G t t


    


          (5) 

4. Introducing Time Scales 

Consider a disease which is quite infectious but has a 
short infective period in comparison with the the human 
life span. This assumption holds for cases like measles 
that have a short infective period of two to four weeks. 
Thus, to seek to express the different time scales, we 
modify model (1) by introducing a parameter 

,  0 1    with a view to making the disease dy- 
namics faster via disease related parameters  t  and 

.  
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        (6) 

We want to know under what conditions an epidemic 
is possible in this scenario. We seek stability of disease 
free state for the model (6), via singular perturbation 
theory. The theory however requires clearly separated 
time scales and an autonomous equation. 

To obtain an autonomous system, we first augment the 
state space with a variable  0,q   and obtain 
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       (7) 

The time scale of (7) is the time scale of the population 
dynamics. If we transform time to the fast time scale of 
the disease, using t   and dropping the equation for 
R since           R t N t I t S t     , we get, 
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I I q SI I

q

   


  





   

   



      (8) 

Taking 0,   (8) becomes an SIR-model without 
population dynamics whose phase plane is fibred by the 
curves, 

    ln  X S q S I              (9) 

Remark 1 The attempt to have a perfect fast-slow 
system (in the context of singular perturbation theory) 
leads to a deeper examination of the function X. Note that 
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X defines a constant on a fast system. We could he- 
uristically define X  as a variable, a slow variable in the 
context of Singular perturbation theory. Hence we 
choose to transform the system SIq  to SXq  with X 
and S as the slow and fast variables respectively. The 
result is a distinct fast-slow system. 

4.1. Distinct Time Scales 

The system (7) mixes the slow time scales of population 
dynamics/vaccination with the fast time scale of the epi- 
demic. In order to apply singular perturbation theory, we 
separate the time scales explicitly using a transformation 
of variables. The system (7) leads to the slow system, 
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where 
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Let t  represent the slow time,   represent the fast 
time and .t   The fast system reads, 

 

      

 

d
,

d
d

ln
d

d

d

X
b X g S q

S
q S S q S X

b S q S

q

 


  


  




    

      

    



   (11) 

Invariant Manifold   I t = 0  
Consider the solution of model (1) on the invariant 

plane   0I t   which corresponds to the diesease free 
state. This plane is also invariant for the transformed 
system, as the transformation is regular. In the trans- 
formed system, we denote this manifold by 

      * , ,   ln 0 .M X S q X S q S       

The dynamics for the  ,0, ,S R q  system where 
  0I t   is given by the dynamics of the system 

 , , ,S X R q  where X  is given by  
   ln .X S q S     It is necessary to note that 

neither the manifold nor the dynamics on the manifold 
depends on  . The limiting systems, when 0   (for 
the limiting fast as well as the slow system) do not have 
  dependance, hence this manifold will be conserved. 
This is because if we have no infected individuals we 
will never have infected individuals in the system; 
moreover,   only appears in terms that include  I t  
and is not generically true for the slow manifold.  

All feasible initial conditions  
   , , 0,S I q T   R R  correspond to points in 

 

         , , ln ; 0, .X S q X q T
q q q

  
   

            
R  

 
X  assumes values only below the maximum of 

   ln .S q S    The maximum is assumed at 
 S q   and thus  

      * lnX X q q q         . 
The slow manifold generically depends on the .  But 

in this special case,  0 0 I   hence   0, .I t t   For 
this reason, though *M  is non-hyperbolic, it remains in- 
variant nevertheless. This is generally not a feature of a 
non-hyperbolic manifolds. 

4.2. Limiting Systems 

We do the infinite separation of time, by taking   to 
zero for the fast system. The limiting fast system reads, 

d
0

d

X


  

      d
ln

d

S
q S S q S X  


           (12) 

d
0

d

q


  

We are now on the time scale of the fast process. We 
determine the stationary solutions of S  for X  and q  
fixed. The two solution branches include 0S  , or 

    ln .X S q S     

As only *0 X X   is allowed for ,X  we find no 
additional stationary points. The stationary points in the 
SX -plane are sketched in Figure 1. The dashed line 
indicates the unstable branch while the solid line in- 
dicates the stable branch solution. The arrows indicate 
the direction of the fast field. 

Now consider the slow system and take   to zero, 

 d
,

d

X
b X g S q

t
     



O. N. OWUOR  ET  AL. 

Copyright © 2013 SciRes.                                                                                  AM 

5

      0 lnq S S q S X             (13) 

d
1.

d

q

t
  

The idea is to solve for X  on the slow manifold 
given by the zero set of the function, 

        , ln .h X S q S S q S X          

Let xmX R  and .smS R  Our focus is on systems 
for which the zero set of  ,h X S  is represented by the 
graph of a function. That is, we assume that there exists a 
single-valued function 0h , which is defined on a com- 
pact domain in smR  such that 

  0, 0; .xmh X h X X R  

The zero set of   0,h X h X  thus defines a manifold 
in phase space, 

    0 0, : ,x s xm m mM X S S h X X    R R R  

to which the motion of the reduced slow system is con- 
fined. We note that the non-linearity of  ,h S X  w.r.t 
S  makes it difficult to obtain the representation 

 0 .S h X  We are however interested in the stability 
along solution branches. 

4.3. Stability along Slow Manifold 

We read the slow manifold from the system (13) and 
denote it by 

        : ln 0.h S q S S q S X           

There are three solution branches along the slow mani- 
fold   0.h S   The first branch is 0.S   The graph 

    lnS q S X     has two solution branches for 
 0 < <S q   herein referred to as the middle branch 

and  >  S q   which we refer to as the right hand 
outer branch. 

In order to determine the stability along the slow mani- 
fold, we inspect the flow on the phase portrait using the 
nullclines of the limiting system. The branch 0  S   is 
unstable, while branch     lnS q S X     has a 
stable middle branch and unstable outer branch, see 
Figure 1, the two branches separated at the point when 
the derivative of  h S  w.r.t. S  is equal to zero. This 
corresponds to the maximum point on this solution 
branch. On the stable part of this solution branch, 

     1 > 0 < 1,q S q S         

from which we define the stability threshold. Since we 
are on the invariant manifold   0, I t   the disease free 
solution is stable if 2 < 1,VR  where 2VR  is defined 
below. 

 

Figure 1. Solution branches on the SX -plane, including 
fast and slow manifolds. 
 

We define the instantaneous reproduction number as 
follows. 

Definition 1 The instantaneous reproduction rate (in 
presence of vaccination) 2VR  is defined by 

    2V L
R t S t    

We call the uninfected periodic orbit instantaneously 
stable, if 

2 < 1.VR  

Note that     t S t   may not be well defined for 
every time point, since we only know that   .t L   
Hence our choice of the essential supremum of this 
function in defining 2VR . 

We note that       0 0
1 d ,

T

VR T t S t t        

defined in section (3) is an average quantity over the 
period [0,T) while     2 :V L

R t S t     is an 
instantaneous stability criterion. We conjecture that there 
could be (for some pathological case), small epidemic 
outbreaks in disease  2 > 1 ,VR  even though the overall 
orbital stability condition still holds  0 < 1 .VR  We reach 
the following conclusion. 

Proposition 2 If the uninfected periodic orbit is ins- 
tantaneous stable, it is also orbital stable. In general, it is 
not true that orbital stability implies instantaneous sta- 
bility. 

4.4. Defining the Optimal Control Problem Due  
to Instantaneous Stability 

The aim is to find a vaccination schedule that is as 
effective as possible. During one period for vaccination 
we want to spend at most 0C  vaccination doses. The 
idea is to distribute the doses, such that the periodic 
solution minimizes the efficiency of this dose-distribu- 
tion, measured in terms of instantaneous stability of dis- 
ease free state. 

Problem 2 For  0,L T 
 , find the vaccination 

schedule that minimizes 
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    2V L
R t S t    

under the constraint that the number of vaccination doses, 
defined by 

      
0

: d
T

C S S           

is bounded above by the maximum doses 0 ,C  i.e., 
  0C S C   

  and the susceptible population is go- 
verned by the differential equation, 

             d
;  0 .

d
S b S t S S S T

t
           

It is important to address the issue of existence for 
solutions for problem 4.4. We take note of the following 
details. One, the worst strategies maximize 2.VR  Fur- 
thermore, the success of any vaccination program can be 
defined in terms of how many susceptible individuals are 
still in the population, i.e., an excellent vaccination pro- 
gram implies no susceptible people remain in the po- 
pulation (all should be immune). 

We therefore study vaccination strategies in terms of a 
set of susceptible population profiles  

      0, .S t L L T   
     We do not seek so- 

lutions for ,L 
  but do our search to a set  , the 

closure of    in 1L  [17,18]. 

5. Optimal Vaccination Strategies 

5.1. The Set Θ  and Its Properties 

In the ensuing discussion, we explore the existence of 
solutions within the set   and by extension, in its clo- 
sure .  For ease of notation, we shall denote the sus- 
ceptible profile   S t  by  .s t  We shall explore 
the properties of the set ,  for purposes of existence of 
solutions. 

Remark 2 We begin by exploring if   is bounded. 
We also explore if the cost function in bounded. 
Consider the proof in the appendix Section 8. The 
susceptible population and the cost of vaccination are both 
uniformly bounded, i.e., 

 .
L

s b    

and 

 . .C s bT  
  

We understand the following from  . .C s bT  
  

where b is birth rate and T is a vaccination period. That 
the maximal vaccination coverage is the total new births 
that occur within a period of time. The actual number of 
vaccination doses used is thus    * . .C bN t T   

We further show in the appendix Section 8 that   is 
pre-compact in 1L  and its closure   is a compact sub- 
set of 1.L  By this property, we can define any candidate 

solution in   that certainly converges to a point in .   
Theorem 1 Let    t L 

  and  0 . < .C s bT     
Problem 4.4 has a solution in  . 

Proof. Let 

      0inf , .
L

m t s t s C s C     

As  s t b   is bounded, and  t L 
 , the num- 

ber m  is well defined. Consider a sequence is   
with   0 .iC s C  Suppose further that the sequence of 
values    i i L

m t s t   converges to m . Since   
is compact w.r.t. the 1L -topology (see appendix 8), there 
exists a subsequence is  that converge in the 1L -norm 
to a point s  . 

Suppose 

    2 < .
L

t s t m m     

That is, there is a set of non zero measure 

        0, 2 0,J t T t s t m T       

and that there exists  s t  for which 

    < .
L

t s t m   

Consider     ,i it s t m   where .im m  Take 
2im m   . Then 

       

         

 

1 d

1
d

1
d 0

4 4

i iL J

iJ

J
L

s t s t s t s t t

t s t t s t t
t

J
t

t

 



  

  

 

  







 

The 1L  norm of the difference should not be larger 
than zero if is  converges to s   in the 1L -norm. 
Thus, by this contradiction, we conclude that 

   
L

t s t m    and  s t   and therefore  s t  
is an optimal solution of the problem.□ 

We next wish to illustrate how to characterize optimal 
population profiles in the sense of problem 4.4.  

Remark 3 The optimal vaccination strategy utilizes the 
least vaccination doses for maximum effect (disease con- 
trol). The more the vaccination doses used, the smaller the 
susceptible population in the population at the end of the 
day. But there is a limit on how much vaccination doses 
we ought to use. In fact, the less vaccination doses we use, 
the better. The optimal vaccination solution does not cor- 
respond to the minimum susceptible population, but to the 
largest susceptible population for which the disease is un- 
der control, i.e. in this case, for which, 

    1.
L

t s t    

Remark 4 
1) An optimal solution of problem 4.4 is a maximal 
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element of the set 

      * ,
L

s t t s t


  
    

where > 0  is chosen appropriately and maximality is 
defined via the partial order induced by the positive cone 
of 1L . 

2) A maximal element  *s t  of   is an optimal so- 
lution of problem 4.4 at costs  *C s t   . 

Remark 5 As the maximal element in   is unique, 
the solution of problem 4.4 is unique.  

Proposition 3 Consider any vaccination point 
 0 0, . t T  Then the limits,  

0
lim  t t s t   and 

 
0

 lim  t t s t   are well defined. 
Proof. It follows from lemma (1) to lemma (3) in the 

appendix section B that the limit is well defined. In the 
notation in the appendix, we revert back to usual notation 
for susceptible solutions of our differential equation, 
  .S t  In the sections here within the text, we have 

used the simpler notation  s t  to denote the solution 
for the susceptible population.  

We now turn to the problem of how to construct op- 
timal population profiles in an explicit manner. 

Remark 6 
1) We find that there are two different modes for op- 

timal population profiles, resembling the bang-bang struc- 
ture: either no control takes place and the profile behaves 
according to the non-controlled ODE  
s b s   ; or, we control enough to exactly meet the 
critical threshold condition    t s t  .  

2) This observation can be formulated in a heuristic 
algorithm: start at time 0t  , and note that the com- 
pletely unvaccinated population has size b  . If 
 0 >b   , then control the population and define 
   s t t   for small time intervals, else define 
 s t . Proceed in this manner: If    s t t  exceeds   

without control, define    s t t  ; if 
    <s t t  , then do not control the population, that is, 

define  s t  by s b s   , together with continuity 
requirements. If this procedure eventually leads to a 
periodic function, this function is a good candidate for an 
optimal population profile. 

5.2. Candidate Optimal Vaccination Strategy 

For simplicity of the function  t , we define two forms 
of periodic contact rate: 
 Rectangular form, with one high and one low value 

within a vaccination period. This could be one calen- 
der year where contact rate is high during schooling 
season (assumed to be continuous with none or very 
short breaks) and low during holiday season (also one 
continuous period); 

 A step function, which has high and low values in 
more than just two time periods. 

We begin with the rectangular form of  .t  

5.2.1. Rectangular Contact Rate 
It is possible to represent a two level contact rate to mimic 
school holidays, when contact rate is low by 1  and school 
terms when the contact rate is higher by 2 ,  such that 

 
 
 

1 1

2 1

, 0, ;

, , .

t T
t

t T T






  


 

Hence   t  is periodic. Without restriction, we as- 
sume in this section always that 1 2 >   and that the 
jump from 2  to 1  occurs at time zero and of course 
at time 1.T  

Proposition 4 Assume that 0C , the maximum number 
of vaccination doses to be used in [0,T) is fixed. The 
population profile for the optimal solution reads 

   

    1 1

1
1

2 1
2

1

; =

; ,

e 1 e ; otherwiset T t T

t T

s t t t T T

b 






 

 




  



 


 

where   is to adapt to meet the requirement 
  0C s C , and the parameter 2t  is determined by the 

condition 

    1 1
1 2e 1 et T t Tb          

if this equation has a solution at  2 1,t T T ; else, we 
choose 2t T .  

In other words, we control the population in the first 
time interval; if the contact rate jumps down from 1  to 

2  (note, that we assume 1 2>  ), there is at least a 
small time window where no control is necessary. De- 
pending on  , 1  and 2 , it may (or may not) be the 
case that the population grows enough such that   2s t   
crosses the threshold   in  1,T T . Accordingly, we 
defined 2t . 

If we consider the vaccination rate, and not the vacci- 
nation population profile, we find that at time zero there 
is a delta peak, as the population necessarily jumps down 
to balance the jump up of the contact rate; in the next 
interval we control with a constant vaccination rate such 
that the threshold is still met. If the contact rate jumps 
down, no control is necessary, that is, the vaccination 
rate is zero. At time 2t , we again need to control the 
population and have again a constant vaccination rate in 
the time interval  2 ,t T . It is straight to check (or better: 
we check this with the considerations in this paragraph), 
via the proposition 5.2 that this population is optimal, 
indeed. We admit that proposition 5.2 requires a con- 
tinuous contact rate, whereas we have here a dis- 
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continuous contact rate. However, it is (for this simple 
case) possible to check that the arguments still hold true. 

5.2.2. Contact Rate as a Step Function 
Similarly, we can handle the case of a piecewise constant 
function (with a finite number of jumps). 

Proposition 5 Assume that 0C , the maximum number 
of vaccination doses to be used in [0,T) is fixed; let 
 t  be a piecewise constant function, i.e. assume that 

there are time points 0 1 10 n nt t t t T       and 
constants 0i   such that 

     1,
0

i i

n

it t
i

t t  




   

where 

   
 

1

1
,

1 , ,

0 otherwisei i

i i
t t

t t t
t



  


；

；
 

and the population profile for the optimal solution in in- 
terval  1,i i iI t t   reads 

 
     1

1

ˆe ; ,

ˆ; ,
i

t T
i i i

I

i i i

b b
s t t t t

s t

t t t



 

 





 
    

  
    

 

where ît  is the immediate time point when     ,t S t   
  is adapted to meet the requirement   0C s C , and the 
time points it  are to be determined by the condition that 
   s t t  , and    s t t   on  suppv s . 

6. Simulation 

We use simulation parameters that depict measles [19]. 
The population is normalized such that 
      1.S t I t R t    The death rate and birth rates are 

assumed equal and life expectancy is assumed to be ap- 
proximately 50 years, typical of the developing countries, 
hence 0.02.b    We further investigate the possible 
synergy between life expectancy (or residence time) and 
disease outbreak by considering a short residence time of 
only one year  1b    to match a contact or vac- 
cination period. This rate may depict school/college stay- 
periods (students spend half to one year together in 
school or college). The constant contact rate is assumed 
to be 0 1800   per year [19]. However, we depict a 
periodic contact rate by a sinusoidal function that mimics 
a one-year period, 

    0 1 sin 2πt t T     

where 1T   year, and 0.5   [20]. 
In Figure 2, we visualize the susceptible population 

profile during one year period, when we control the dis- 
ease using the optimal control strategy derived from the 
instantaneous control problem. If we consider the num- 

ber of susceptible individuals over time (upper panel), it 
is not clear why it follows such a time course or tra- 
jectory. But when we also consider the product 
   S t t , we observe that the susceptible population is 

controlled in such a way that this product remains cons- 
tant over most part of the period, but when the product 
becomes smaller than a critical value, then vaccination 
doses are administered and then susceptible population is 
left to grow freely again. 

In Figures 3 and 4, we now compare three different 
vaccination strategies: the dotted line indicates the effect 
of a constant vaccination rate. This is a baseline effect 
that we may reach without optimization. The dashed line 
represents the performance of the strategy optimized with 
respect to the instantaneous criterion, while the solid line 
shows the orbital optimal strategy with respect to the 
Floquét criterion. On the x -axis of Figures 3 and 4, we 
have the average proportion of vaccination doses that are 
available for use, i.e., 

 
0

1
d .

T
S t t

T   

Note that this value corresponds in a one-to-one 
manner to the number of vaccination doses used per  
 

 

 

Figure 2. Susceptible population (upper panel) and sus- 
ceptible population times contact rate (lower panel) under 
the optimal instantaneous vaccination strategy 

 , 10.02 15vR  . 
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Figure 3. Costs for minimizing    and 2VR  for 

 0.02μ  . Horizontal bar indicates 0 1 vR   resp. 

 2 1vR  ; the dotted line is the constant case, the dashed line 

is the optimal solution according to instantaneous criterion, 
while the solid line is the optimal solution according to 
Floquét case. Vertical bar indicates the critical vaccination 
coverage of 0.944% (upper panel) and 0.963% (lower pa- 
nel). 
 
period, as the costs can be represented as 

 
0

d
T

bT S t t   (see also [15]). On the y -axis of 
Figures 3 and 4, we represent 

      0 0
d

T

vR t S t t T     to indicate the  

performance w.r.t. the Floquét stability and 
     2v L

R t S t     to denote the effect with 
respect to the instantaneous criterion. The functions are 
re-scaled in such a way that they agree with the re- 
production number in case of constant contact rate and 
vaccination strategy and moreover, in such a way that 
always, 1  is the critical threshold. Up to a certain de- 
gree, this choice of the scaling factors are arbitrary, but 
obvious and intuitive.  

We have taken into account three different time scales 
in this exposition: time scale of the disease infection, 
given by 1   (about one week), time scale of the 
contact rate and vaccination rates (about one year), and 
the time scale of the residence time (50 years in Figure 3 

where 0.02   and 1 year in Figure 4 where 1.   
The central question is: how much can we gain by 
optimization and how much do we loose if we use the 
“wrong” optimization criterion? 

Let us first consider a case of life expectancy of 50 
years illustrated in Figure 3. We find very little differ- 
ence in the effect of the optimization strategies. Some- 
how, the overall number of vaccination doses applied per 
period matters, but the timing/pattern of applying vacci- 
nation doses appears like not so important. 

The scenario however improves when we consider that 
the residence time is in the same magnitude like the vac- 
cination period. This situation is depicted in Figure 4. 
We observe a difference in this case. This effect is 
stronger for the instantaneous criterion than the Floquét 
criterion. This observation can be explained from the fact 
that the Floquét criterion is an average while the instant- 
taneous criterion considers extreme values. Thus, the 
extreme values that determine the supremum norm are 
averaged out and are less pronounced. However, for 
 

 

 

Figure 4. Costs for minimizing    and 2VR  for 

 1.0 . Horizontal bar indicates 0 1VR   resp. 2 1VR  ; 

dotted line: constant case, dashed line: optimal solution 
according to instantaneous criterion, solid line: optimal 
solution according to Floquét case. Vertical bar indicates 
the critical coverage of 94.4% (upper panel) and 96.3% 
(lower panel). 
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large coverage of over 95% say, the performance of the 
Floquét strategy w.r.t. the instantaneous criterion is even 
worse than the constant strategy. In cases with a rela- 
tively short residence time, we now see that the choice of 
the optimization criterion obviously matters. 

The fact that the critical vaccination coverage is 0.944 
for the Floquét criterion and 0.963 for the instantaneous 
criterion is a consequence of the averaging with the Flo- 
quét term. The overall vaccination coverage necessary to 
eliminate the infection for a disease such as measles is 
always around 95%, a number that is generally hard to 
achieve. Especially for this reason, the organizational 
aspects of vaccination campaigns or vaccination days, 
becomes of critical importance. 

7. Discussion 

We investigated the influence of time scales on the sta- 
bility of the uninfected solution. In the simulation, we 
considered the specific case of a periodic parameter in- 
cluding contact rate and vaccination rate. We found that 
the orbital stability criterion used for periodically driven 
systems (Floquét theory), provides an appropriate control 
strategy if the time scale of the disease and the contact 
rate are similar. If the disease is much faster (as is often 
the case with childhood related diseases), then singular 
perturbation theory defines a rather optimal control 
strategy; the supremum norm of the product between the 
susceptible population and contact rate. We used this 
insight to set up two different optimization problems. 
The first problem (the Floquét case) has been treated 
extensively in a different paper [15]. In this paper, we 
focused mainly on the instantaneous case and simulated 
the two strategies for comparison purposes. 

The results of simulation show that there is almost no 
difference in the performance of the vaccination strate- 
gies if the resident time (life expectancy) of individuals is 
relatively long in comparison with the period of the con- 
tact rate. This result can be also intuitively understood 
without the mathematical considerations: If the residence 
time is long, i.e., if an immunized individual lives for 
many time periods before he is replaced by a susceptible 
person again, then the importance of the time point/phase 
at which he is immunized does not matter. This effect is 
even stronger if the resident time is exponentially dis- 
tributed. The results also indicate that the optimization 
begins (though not markedly) to matter if the residence 
time and the period of the contact rate do match. In this 
case, optimization is more important under the instanta- 
neous criterion than under the orbital criterion, as the 
latter averages while the first focuses on instantaneous 
extreme values. The little difference in the vaccination 
strategies that we notice in the former case when the time 
scales are rather wide apart, is due to the fact that we are 
probably observing fast process on a slow time scale, 

hence we cannot see much. We must therefore separate 
the time scales clearly, as is the case in singular perturba- 
tion theory. 

All in all, our conclusions are that in most cases, opti- 
mization will not pay if the complete population is under 
consideration. It only pays for small, well defined sub- 
groups with relatively small residence times like pre- 
school population. In this case, the importance is streng- 
thened, from our results, by the inter-connectedness of 
recruitment into population, exit and contact period. 

Our results support the idea of vaccination days or 
special vaccination periods, i.e., vaccinate when 

    > 1
L

t S t   

We therefore ask whether vaccination days are benefi- 
cial, over and above constantly administering vaccination 
doses. Despite these results, even for large populations 
(larger than school populations), vaccination days may 
be of value. Most likely, the reason is not a certain reso- 
nance or a clever use of the interaction between the dy- 
namics of immunization and infection, but merely an 
organizational effect: The way vaccination days are usu- 
ally organized allows for re-vaccination such that vacci- 
nation failures are removed, and persons (mostly: chil- 
dren) missed in one day have the opportunity to be vac- 
cination at another vaccination day. Moreover, the con- 
centrated effort of vaccination (in a given location as 
well as in time) may enhance the interest of a large part 
of the population on the vaccination exercise hence the 
compliance becomes better. All these effects may be cru- 
cial in reaching the critical vaccination coverage that is 
ordinarily very difficult to reach by standard and routine 
means. In this sense, the result presented here should be 
understood as a positive result, in the sense that vaccine- 
tion days need not to be planned only according to some 
dynamics of the disease but also according to organiza- 
tional requirements. 
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Appendix 

The Set Θ  is Bounded and Pre-Compact in 1L  

We defined the set of optimal solutions via the set of 
susceptible population profiles 

    1 0, .s t L L T 
     

Interest is to show that solutions of the optimal control 
problem exist in this set. We therefore examine the pro- 
perties of this set. 

We begin by considering the following proposition.  
Proposition 6 For any L 

  we find uniform 
bounds for  .

L
s   and  . , C s  

  i.e., 

 .
L

s b    

and 

 . .C s bT  
  

Proof. From model 1, we observe that the differential 
equation for the total population is, 

         0

d
;  0

d

N t
b S t N N

t


      

whose solution is given by 

    0 e .tN t N b b      

It follows that 

   .lim
t

N t b 


  

Since             ,N t S t I t R t       we 
observe that 

  0 .S t b    

In the new notation, 

  .
L

s t b    

We now consider the cost functional 

        
0

.
T

C S t t S t        

Consider the differential equation for the susceptible 
population, 

          d

d
S t b S t t S t

t
        

  

       
0

0 0 0

d
d

d

d d d

T

T T T

S t t
t

b t S t t t S t t



     



  
 

    
0

0 d
T

bT S t t C S          

Therefore, 

    
0

d ,
T

C S bT S t t         

and therefore,   .C S bT   
  

To investigate compactness, we use a remark [21, p. 
274] that follows from sobolev embedding theorem in 
[21, Theorem 1, p. 272]. We start with both the remark 
and the theorem (without proof as this follows from the 
reference). 

Theorem 2 Assume n  R  is open, bounded and 
Lipschitz domain, s.t., 1.C Suppose 1 ,p    
then 

   1, p qW L    

for *1 <q p  and * .
np

p
n p




  

If * , p  as ,p n  then 
1)  

   1, p pW L    

for all 1 .p    
2)  

   1,
0

p pW L    

even if 1.C  
Using the above remark, we specify the following 

proposition. 
Proposition 7 The set     1 0,s t L L T 

     
is a bounded subset in  1,1 0,W T  and is pre-compact in 

1L . 
Proof. We already showed that  .s


 is uniformly 

bounded, and thus, we only consider the bounded in- 
terval  0, .T    1.

L
s  is also bounded in this interval. 

The norm of the derivative can be derived using the dif- 
ferential equation, 

        

   1

0 0 0

d
d d d

d

. . .

T T T

L

s t t b s t t t s t t
t

bT s C s

 



  

     

  


 

All the terms in the last line are uniformly bounded, i.e. 
  is a bounded subset of  1,1 0,W T . Since  1,1 0,W T  
is compact embedded in 1 L by theorem (8), then   is 
pre-compact in 1L  and its closure   is a compact sub- 
set of 1.L  

Theorem 3 If  .C s    is defined for some maximal 
costs 0 ,C  i.e.,   00 .C s C    , the problem 3 has a 
solution in .   

Proof. C  is continuous functional in s  and the set 

    0 .s t C s C      

is non-empty and compact. Thus, the continuous func- 
tional   assumes its minimum within  .  
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Convexity of Θ  

We show that   is convex. According to the theorem 
of Krein and Milman, the extremal points structure the 
complete set. Consequently, we investigate this special 
set. The inside structure we obtain here is the centerpiece 
for our considerations about the structure of the optimal 
points in  . 

Proposition 8 The set   is convex and so is its 
closure     

Proof. Let  S S    and  i i iS S  , 1, 2i   
be population profiles in .  Since ,i L 

  positive 
integer, we define 1 > 0  such that  : > 0ii S   , 
i.e.functions that stay in the positive domain and possibly 
bounded away from zero. 

We define 

       1 21 .S t S t S t      

Does S  satisfy the original differential equation for 
 ?S t  

       

        
      
      

         
   

1 2

1 1

2 2

1 2

1 1 2 2

d d d
1

d d d

1

1

1

.

S t S t S t
t t t

b S t t S t

b S t t S t

b S t S t

t S t t S t

b S t S t



  

 

   

 

  

  

 

  

    

  

   

  

  

   (14) 

where 

           
 

1 1 2 21t S t t S t
t

S t


  


 
      (15) 

Since  t  is periodic,  t  is also periodic, and 
so is .S   By convexity of ,  S   can be 
expressed as a convex combination of : 1, 2iS i  . 

We also show that .L

  

           
 

   
       

 
   

1 1 2 2

1 2
1 2

1 2

1

1
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L
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Hence   .S t   
Since   is the closure of a convex set, it is also con- 

vex. 
Hence,   is a convex and compact set. The theorem 

of Krein-Milman [22, p. 362] tells us, that it can be 
characterized completely by the set of its extremal points, 
   . 

Continuity of Elements of the Set Θ  at  
Vaccination Points 

We wish to define candidate optimal vaccination stra- 
tegies that vaccinate at discrete time points. We de- 
monstrate that the functional    S t  has well de- 
fined left hand and right hand limits at vaccination 
points, 0 .t  

Consider following Lemmata: 
Lemma 1 Let  0 0,t T  be fixed and > 0.  De- 

fine two functions, 

    0 0sup , , A ess S t t t t      

    0 0inf , ,B ess S t t t t      

Then, for 0 < <     
1) ,A A     
2) .B B    
Proof. The set, 

     
     

0 0

0 0

, >

, >

t t t S t A

t t t S t A

 

 

 

  
 

and denote .  as the measure of a set, then 

     
     

0 0

0 0

,

,

t t t S t A

t t t S t A

  

  

  

   
 

     0 0, > 0t t t S t A      

     0 0, 0t t t S t A        

     0 0, 0A t t t S t A        

     0 0, 0A t t t S t A        

.A A     

Similarly, .B B    
Corollary 1 It follows that, 

A A B B        

for arbitrarily small positive real values      
Lemma 2 The 0  lim A B     exists and is equal to 

zero. 
Proof. We know that .A A B B        
Thus A B A B        for  .    
Define   : , A B     monotonously increasing 

in .  
Define   0 .liminf     We show that the limit 

exists for 0.   Suppose > 0.   We know that for 
  decreasing, A  is monotonously decreasing and bound- 
ed function, B  is monotonously increasing and bound- 
ed function, hence the following limits exist: 
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0 0lim A A    

and 

0 0lim .B B    

Suppose > 0.  We have   S t  monotonically in- 
creasing in  0 0, .t t   Since  

 0 0 0> , , ,B B t t t     0 0,      such that 
   0 4S t B    in the interval  0 0 0, ,t t   thus 
   0 4S t A    in  0 0, .t t   Hence 

     0 0 0 0, 4 0. t t t S t A         

 0 04    0, , A A          

such that as   0,~   0 00, 4. A A     
0 4.     0,   a contradiction. 

Lemma 3 0lim A B      exists and is equal to 
zero.  

Proof. The proof parallels that of lemma (2), reversing 
time and changing the roles of the supremum and in- 
fimum.

 


