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ABSTRACT 

We describe parallel implementation of the metaheuristic approach to the problem of comparing strings representing 
DNA sequence. By this approach, one can define a whole new class of metrics on a set of strings; some of this metrics 
can lead to interesting results when used for string comparison. We propose several heuristics; compare results achieved 
when using those heuristics and compare parallel and sequential implementation of proposed approach. 
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1. Introduction 

Determining DNA likeness is a particular case of a more 
common task of approximate comparison of strings, al- 
though called fuzzy comparison [1]. “Fuzzy” means here, 
which we should be able to determine similar sequences 
even if there are some errors and distortions, like inser- 
tion or deletion of several symbols. The amount of such 
distortions can be used as a metrics on a set of strings, 
defined as the minimum number of edits needing to 
transform one string into the other. This task can be found 
in many areas, like comparison of genes, chromosomes 
and proteins, which are one of the most important prob- 
lems and at the same time one of the basic tools in mo- 
lecular biology and bioinformatics [1,2]. Strict compari- 
son of chains of nucleotides is unacceptable because of 
errors in data and possibility of mutations. Although the 
fuzzy comparison is used in text processing, Levenshtine 
metrics is used for error correction, for improvement of 
text recognition quality and in database search [1]. 

There are several approaches used for string compari- 
son. Algorithms based on dynamic programming (like 
Hunt-Shimansky, Khirshberg, Wagner-Fisher and other) 
can provide the exact solution ([1,3-6]). Mostly, such al- 
gorithms have quadratic worst-case complexity and are 
considered too slow when speed is more important than 
accuracy (like database search). There are many appro- 
ximate algorithms designed especially for some field of 

science, like BLAST [7] algorithm, designed for genetic 
database search. 

Metaheuristic approach to fuzzy string comparison was 
firstly described in [8]. The strings likelihood assertion 
made by this approach is close to Levenshtein distance, 
but it is not equal to, nor is an approximation of Leven- 
shtine distance. This algorithm allows using multiple al- 
ternative metrics on space of chains of nucleotides, de- 
pending on used heuristics. This metrics can reflect the 
likelihood of compared strings, although they show dif- 
ferent meanings of likelihood itself. 

2. Implementing Metaheuristic Approach 

Meta-heuristic approach to discrete optimization prob- 
lems uses branch and bound algorithm combined with se- 
veral different heuristics that are used for next step selec- 
tion. Heuristics assessments are averaged using dynami- 
cal risk functions. Genetic algorithms are used to fit the 
averaging ratios, the same genetic algorithms with sim- 
plified self-learning are used for branch and bound start- 
up ([9,10]). 

For this particular problem we did the following. Let x, 
y be the source strings, i, j be indexes of symbol in x and 
y, respectively, r be metrics value. By shift of a string we 
mean increasing appropriate index by 1. The algorithm is 
described by the following: 

Input: Strings x and y. 
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Step 1: i: = 0, j: = 0, r: = 0; 
Step 2: if x [i] = y [j] then begin 
Shift both strings; 
r: = r + cost of matching x [i] and y [j]; 
end 
else begin 
apply heuristics to generate possible “trajectories” to 

shift into i' and j' such, that x [i'] = y [j']; 
rate trajectories with some other heuristics; 
apply risk function to average ratings; 
perform a shift (possibly updating r); 
end; 
Step 3: repeat step 2 until the end of one of the strings 

is reached. 
The cost of matching two symbols in a simplest case 

equals to 1; for DNA it can be defined using some table 
of amino acid replacement costs, e.g. BLOSUM [11]. 

The following heuristics were used: 
1) We select such trajectories that the value (i' − i) + 

(j' − j) is minimum, or close to minimum. E.g. we first 
lookup all the trajectories with one string shifted by one 
symbol; next with one string shifted by two symbols or 
both strings shifted by one symbol, etc.  

2) We shift a string, which current symbol found less 
frequent in the other string. For this heuristics it’s pref-
erable to know probabilities of appearance of a given 
symbol in each of the strings. If those probabilities are 
not known a priori, we consider them being equal. While 
following the algorithm we can adjust those probabilities 
or use aging algorithm, such that probability of a given 
symbol will be defined by some fragment of a string in- 
stead of a whole string. If probabilities for both strings 
are equal, we shift a string in which more symbols are 
left. 

3) Combination of previous heuristics (1 and 2); to cal- 
culate the position using second heuristics we sum prob- 
abilities of finding other string for all symbols that will 
be passed by a shift.  

4) Use of an algorithm of a longest common subse- 
quence search for x [i..i + k] and y [j..j + k], where k ~ 15. 
For shift we use i', j', at which the longest common sub- 
sequence ends. If no common subsequence found, the 
search range is increased. When using this heuristics the 
result is close to the longest common subsequence value. 

5) Combination of 3 and 4; the position (i', j') given by 
forth heuristics is a ratio of length of the longest common 
subsequence of strings x [i..i'] and y [j..j'] to an average 
shift length from (i, j) to (i', j'). 

6) We use algorithm [10] for strings x [i..i + k] and y 
[j..j + k], where k ~ 15, then shift to (i', j'), having the 
greatest value in Needleman-Wunsch table. 

Combination of 3 and 6; the position (i', j') given by 
sixth heuristics is a ratio of a value in Needleman- 
Wunsch table, corresponded to that position, to average 

shift length from (i, j) to (i', j'). 

3. Using Multiple Greedy Heuristics 

Now let us consider heuristics used to select the element 
that separates the problem into right and left sub-prob- 
lems for branch and bounds method. Solving a discrete 
optimization problem by branch and bounds method, it is 
desirable to choose separating algorithms depending on 
the solved sub-problem. Separating algorithms can be se- 
lected based on dimension of the solved problem, its 
bound, and by taking into account some specific charac- 
teristics of considered problem.  

In classical examples of branch and bounds method for 
travelling salesman problem ([12] etc.), some good sepa- 
rating algorithms were used (by “good” we mean that 
they perform better than other ones). However, long be- 
fore [12], various other heuristics were used for the bran- 
ching, see, e.g., [13] Let us mention, for example, the fol- 
lowing heuristics for the reduced TSP-matrix: total num- 
ber of zeroes, sum of minimums for all the rows and co- 
lumns, sum of some minimum values of considered row 
and columns multiplied by special “dam-nation constants”; 
all these values are computed by the TSP-matrix after re- 
ducing and selecting separating element (i.e., separating 
edge for branching). Probably we mentioned here less 
than 10% of the heuristics used before.  

Thus, how can we use the fact that in different situa- 
tions (i.e., in different sub-problems of the same discrete 
optimization problem) different heuristics relatively per- 
form better? (This question is true for both exact and un- 
finished algorithms). We need decide which separating 
element to use for branching. We have information from 
various experts, i.e., of various special heuristics, so call- 
ed predictors (or estimators). The predictors often give 
discrepant information, and we have to average it in some 
special way. We use an approach that is used in nonde- 
terministic games programming: dynamic risk functions.  

Since different heuristics return values of different mea- 
surement units, we have to normalize them for comput- 
ing the final result. For that purpose one can use a special 
set of normalizing coefficients. The other possible solu- 
tion is a modification of “voting method”: use special dy- 
namic risk functions for the results of voting. It is impor- 
tant to note, that the dynamic selection of the particular 
risk function is similar to selecting it in nondeterministic 
games programming ([14,15]). Since we consider here 
discrete optimization problems (not nondeterministic games 
programming), we have to add here new heuristics, i.e. 
heuristics for selecting “current position estimation”, in 
other words, for evaluation of the situation obtained by 
the solving some discrete optimization problem using 
branch and bounds method. 

Thus, let us have some various heuristics for selecting 
next step element of branch and bounds method (or, gen- 
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erally speaking, for selecting the strategy of solving). Let 
each of possible strategies have some various expert eva- 
luations of availability (i.e., let us have some independent 
expert sub-algorithms, so called predictors). Then the con- 
cluding strategy could be chosen by maximum of aver- 
age values. However, let us consider the following exam- 
ple; this example is connected with backgammon pro- 
gramming, because it uses 36 predictors).  

Let expert evaluations of availability lie in segment 
[0,1]. Let the 1st expert evaluation of availability for the 
1st strategy be equal to 1, and evaluations of 35 other ex- 
perts be equal to 0.055. And for the 2nd strategy, 2 ex- 
perts have evaluation equal to 0.95, and other 34 experts 
have evaluation equal to 0. It is very likely that each hu- 
man expert in such case will choose 2nd strategy. How- 
ever, averaging-out by the simplest algorithm (i.e. simple 
average of expert evaluations) gives 0.081 for the 1st case 
and 0.053 for the 2nd one; so do we have to choose the 1st 
strategy?  

On the other hand, we can use an approach similar to 
[15], i.e., use the same algorithms for dynamic risk func- 
tion construction. For the 1st strategy, we obtain the fol- 
lowing risk function:  

–0.685·x2 + 1.300·x + 0.386; 
and for the 2nd strategy: 

–0.694·x2 + 1.374·x + 0.321. 
The final values of expert evaluations averaging-out 

by using these risk functions are 0.111 for the 1st strategy 
and 0.147 for the 2nd strategy. Therefore, using such al- 
gorithms for dynamic risk function construction for ex- 
pert evaluations averaging-out gives “natural” answers.  

Note that repeating the averaging procedure twice (i.e., 
averaging-out using preliminary values of the first step of 
dynamic risk functions) chooses 1st strategy. However, in 
the limit we have “natural” answers again. This can be 
seen in Table 1; the column headers are equal to the 
number of step of averaging-out using dynamic risk func- 
tion (i.e., the number of iterations ran by a dynamic risk 
function constructing algorithm). The column 0 is the sim- 
ple average of expert evaluations, and the column  is 
the limit value. 

Note that in real discrete optimization problems such 
situations, when the difference between minimum and 
maximum values is more than 0.5 (i.e., more than 50% of 
the segment of values) are very often; for example, for 
accidental TSP having dimension 75 and some of pre- 
dictors mentioned before, they contain, by statistics of 

 
Table 1. Risk function values for different strategies. 

 0 1 2 3 4 5 …  

1st strategy 0.081 0.111 0.104 0.106 0.105 0.105 … 0.105

2nd strategy 0.053 0.147 0.094 0.118 0.106 0.112 … 0.110

the author, about 10%. 

4. Approach to a Parallel Algorithm 

Main problem in parallel algorithm design is finding in- 
formational dependencies and independent sub-tasks. 

The proposed algorithm is based on iterative shift of 
strings in some position, defined by two indexes (i, j) for 
first and second string respectively. To define next step 
we search in some small set of positions, closest to cur- 
rent one, and then we select the position with the highest 
score. Obviously, such shifts can be made only sequen- 
tially, and the only part of an algorithm that has indepen- 
dent subtasks is a usage of heuristics for position selec- 
tion. There are two possible ways for parallelizing this 
subtask: applying each heuristics in separate thread, and 
using parallel algorithms for heuristics themselves.  

Using separate threads for each heuristics has the fol- 
lowing disadvantages. First, the final result of using sev- 
eral heuristics is not always their “linear sum”, some- 
times several heuristics are combined and considered as 
one complex heuristics. Second, some heuristics have re- 
latively low computational complexity, and thread mana- 
gement costs become too significant.  

Parallelizing heuristics although has disadvantages. 
Some heuristics being parallelized work slower, then their 
serial analogues, because of high overhead costs (like men- 
tioned above thread management costs). 

Thereby selecting independent subtasks seems not to 
be effective enough for practical use. But this does not 
mean that it is impossible to create effective parallel al- 
gorithm, because one can define some new subtasks. 
Thereto at each step we can select multiple possible shift 
positions, creating several “phase trajectories” in shift po- 
sition space. There are several ways to do that, e.g. use 
several positions with highest score or use some ad hoc 
heuristics. Subtasks created like this can have a fixed size 
(i.e. iterations of basic shift cycle). After processing sub- 
tasks we can select several best results and generate new 
subtasks based on them. 

Parallel implementation of meta-heuristic approach de- 
scribed above is a new algorithm, and introduced method 
of subtasks creation is basically, a new heuristics. This 
new parallel algorithm has better results than the sequen- 
tial one, it is more precise. While the initial algorithm uses 
greedy heuristics to select next shift position, the intro- 
duced algorithm make deeper analysis of consequences 
of next step selection. 

5. Results of DNA Comparison 

To test our algorithm, we used mitochondrial DNA of 
different organisms. Those DNA molecules containing in 
cell’s mitochondria are not recombined, and they are in- 
herited from mother’s organism by most of multicellular 
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organisms. Therefore they can be changed only due to 
mutations. By analyzing mitochondrial DNA and its mu- 
tations, one can determine not only the degree of kinship 
of two species, but although a time, needed to accumu- 
late some mutations in population [16]. Thereby one can 
estimate a moment of time when there were no mutations 
and population was genetically homogeneous.  

We used genetic data for next species: Homo sapiens 
(human), Pan troglodytes (chimpanzee), Bison bison (bi- 
son), Bos taurus (wild bull), Sus scrofa taiwanensis (pig), 
Canis lupus (wolf), Felis catus (domestic cat), Gallus gal- 
lus (chicken), Mus musculus (mouse), Rattus norvegicus 
(rat), Orcinus orca (killer whale), Orcaella brevirostris 
(Irrawaddy dolphin), Peponocephala electra (melon-hea- 
ded whale), Gadus morhua (Atlantic cod), Drosophila si- 
mulans (see [17]). An example of DNA comparison re- 
sults are presented in Table 2. 

After analyzing test results we have made the follow- 
ing conclusions: First two heuristics show insignificant 
differences for all compared pairs of DNA. However this 
does not mean that the underlying principals are wrong, 
because the third heuristics, which based on the former 
two, showed adequate results, pretty close to the results 
showed by longest common subsequence search. Thus 

 
Table 2. Results of comparison Peponocephala electra with 
other species. 

Heuristics # 1 2 3 4 5 6 7 8 9

Bison bison 0.55 0.40 0.58 0.58 −0.10 0.26 0.30 0.81 0.73

Bos taurus 0.54 0.40 0.58 0.58 −0.14 0.26 0.24 0.81 0.72

Canis lupus 0.55 0.41 0.68 0.60 −0.06 0.26 0.35 0.80 0.72

Drosophila 
simulans 

0.51 0.37 0.55 0.56 −0.39 0.23 −0.24 0.59 0.40

Felis catus 0.56 0.41 0.58 0.57 −0.04 0.26 0.27 0.78 0.70

Gadus morhua 0.55 0.40 0.57 0.57 0.05 0.25 0.37 0.74 0.61

Gallus gallus 0.55 0.40 0.57 0.57 −0.05 0.25 0.25 0.71 0.55

Homo sapiens 0.55 0.40 0.57 0.57 −0.08 0.26 0.13 0.77 0.66

Mus musculus 0.55 0.41 0.67 0.58 −0.16 0.27 0.31 0.79 0.69

Orcaella 
brevirostris 

0.57 0.78 0.91 0.94 0.40 0.34 0.85 0.94 0.93

Orcinus orca 0.58 0.64 0.87 0.91 0.46 0.37 0.87 0.93 0.93

Pan troglodytes 0.55 0.41 0.62 0.62 −0.06 0.27 0.29 0.79 0.69

Peponocephala 
electra 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rattus 
norvegicus 

0.55 0.40 0.63 0.59 −0.15 0.27 0.29 0.79 0.69

Sus scrofa 
taiwanensis 

0.55 0.41 0.58 0.58 −0.16 0.27 0.28 0.78 0.67

the kinship rate for Irrawaddy dolphin and melon-headed 
was 0.91, Irrawaddy dolphin and a killer whale were 0.87, 
Irrawaddy dolphin and other Chordata were 0.59 to 0.63, 
Irrawaddy dolphin and Drosophila were 0.45. Results 
shown by the forth heuristics are pretty similar to those 
of the third one. Fifth heuristic showed pretty similar re- 
sults, but feebly marked for small values. Results shown 
by sixth heuristics do not allow to mate any conclusion 
about DNA kinship. Seventh heuristics (that is a com- 
bination of third and sixth one) showed results pretty si- 
milar to Needlemah-Wulsch algorithm. For big values 
(more than 0.9) seventh heuristics results differing from 
Needleman-Wulsch were not more than 1%. 

Results shown by parallel version of algorithm showed 
the same results, but shifted to a high values range. Pa- 
rallel implementation of fifth heuristics performed better 
than sequential one, and was closer to results showed by 
the longest common subsequence search algorithm. On 
the contrary, results of parallel implementation of the 
seventh heuristic performed poor, and showed obviously 
wrong results for some DNA pairs. In [10] we had al- 
ready covered an approach to parallelizing branch-and- 
bouds algorithms, and here we used the same approach 
with heuristics. The results of that research contain lots 
of data and can’t be presented here, so it will be describ- 
ed in a separate paper. 

For most of heuristics the results of DNA comparison 
correspond to biological taxonomy [18]. At the same 
time the proposed algorithms are pretty fast, because the 
run time is in linear dependence with input length, but 
depends on heuristics parameters. This makes the pro- 
posed algorithms applicable for DNA data analysis. 
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