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ABSTRACT 

The treatment of moving material interfaces and their vicinity is very important for compressible multifluids. In this 
paper, we propose one type of ghost fluid method based on Riemann solutions for front tracking method. The accuracy 
of the interface boundary condition is discussed for the gas-gas Riemann problem. It is shown that the solution of the 
ghost fluid method approximates the exact solution to second-order accuracy in the sense of comparing to the exact 
solution of a Riemann problem at the material interface. Numerical examples suggest that the present scheme is able to 
handle multifluids problems with large density differences and has the property of reduced conservation error. 
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1. Introduction 

The dynamics of interfaces separating different fluids in 
compressible flows is of interest in several scientific 
fields as diverse as astrophysics and geophysics. It is also 
of significant importance in many engineering applica- 
tions. A relatively dominant difficulty for simulating 
compressible multi-medium flow is the treatment of 
moving material interfaces and their vicinity. In general, 
there are two basic issues that need to be taken into ac- 
count. One is to capture the interface location and topo- 
logical changes accurately. Researchers can take all 
kinds of effective measures such as volume of fluid 
method [1] or level set technique [2] or front tracking 
technique [3] to deal with it. The other is to faithfully 
simulate the interface state including physical nonlinear 
wave interaction occurring at the interface. 

The ghost fluid method (GFM) based techniques [4-8] 
provide us simple and flexible ways for handling multi- 
medium flows with immiscible material interfaces. A 
closely related ghost cell level set method [4] was pro- 
posed by Fedkiw. But the GFM is problem-related and 
not suitable for some cases like high speed jet impacting 
[5]. To take into consideration the influence of both, wave 
interaction and material properties on the interfacial 
evolution led to the development of a modified ghost 
fluid method (MGFM) [5,7]. Wang [8] also presented a  

real ghost fluid method (RGFM) by predicting the flow 
states for the real fluid nodes just next to the interface 
and the ghost fluid nodes using the Riemann problem 
solver. 

For the GFM [4-8], the level set technique [2] is em- 
ployed to capture the moving interface. However, they 
can be used with other techniques for tracking the inter- 
face. Recently, Hao [9] and Terashima [3] extend Tryg- 
gvason’s method [10] using Fedkiw’s ghost fluid method 
[4] to handle compressible flows. Based on Riemann 
solutions, front tracking method combined with MGFM 
and RGFM had been discussed [11]. 

In this paper, a relatively class of GFM based on Rie- 
mann solutions is developed. One solves a system of a 
two-shock approximation to the Riemann problem for 
prediction of the condition at the interface. Then one uses 
the predicted pressure and velocity as those for the ghost 
fluid and the real fluid nodes just next to the interface. 
The isobaric entropy is employed at the interface to fix 
the real fluid density at node just next to the interface to 
suppress the possible “overheating” and also to assign 
density for the ghost fluid. The RGFM is one of this type 
of GFM. We combine the GFM with a front tracking 
method (GFM-FT). The front tracking method [12] is 
used here. The accuracy of the interface boundary condi- 
tion is discussed for the gas-gas Riemann problem.  
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The conservation errors of this class of GFM and MGFM 
are analyzed for FT method. Numerical tests show that 
the GFM-FT has the property of reduced conservation 
error comparing to MGFM-FT. 

2. Equations 

The Euler equations governing one-dimensional com- 
pressible flows are written as 

 
0

F UU

t x




 
               (1) 

where 

 T
, ,U u E  ,     T2, ,F U u u p E p u    , 

Here   is the density,  is the velocity,  is the 
pressure, and  is the total energy per unit volume. 
The total energy is the sum of internal energy and kinetic 
energy, 

u p
E

21

2
E e u   ,                (2) 

where  is the internal energy per unit mass. e
For closure of Equation (1), the equation of state (EOS) 

is required. The EOS for compressible gases and water 
can be expressed in the following consistent form as 

 1p e B     ,              (3) 

where   and  are treated as constants. For the air, B
1.4 
7.1

, . For the water medium (Tait’s equation), 0B 
5  , . 3309B 

3. Tracking Fluid Interfaces 

Suppose that the interface lies between node i and node i 
+ 1. To define the Riemann problem at the interface, the 
two initial constant states of the Riemann problem are 
simply given as 1L iU  and 2U  R i . Once the 
Riemann problem is defined, the two shock Riemann 
problem solver [5] can then be employed to provide in- 
termediate interfacial states—

U U 

Ip  (pressure), Iu  (ve- 
locity), and IL  and IR  (the densities on the left and 
right sides of the interface). Now, having determined the 
interface velocity Iu

nt
 and its spatial location, the inter- 

face is moved between  and . 1nt

4. Ghost Fluid 

The initial conditions for the governing Equation (1) are 
given as 

0

0

L

R

U x x
U

U x x


  

.                (4) 

Regardless of the numerical scheme used, an algo- 
rithm based on the GFM essentially consists of solving 

two separate Riemann problems in the two respective 
single media with one-sided ghost fluid. One is in me- 
dium 1 (on the left side of the interface) with the initial 
conditions of 

0

0

L

L

U x x
U

U x x

 


                (5) 

and it solves from the grid point 1 on the left-end to the 
ghost point, The other is in medium 2 (on the right side 
of the interface) with the initial conditions of 

0

0

R

R

U x x
U

U x x

  


                (6) 

and it solves from the ghost point to the end point on the 
right. Here, “*” indicates the fluid states have been re- 
placed by the ghost fluid states. 

With the method of characteristics, we have the rela- 
tions 

1
dI

L

P

I L p
L L

u u p
c


                   (7) 

1
dI

R

P

I R p
R R

u u
c


    p                (8) 

where ,L Lc   and ,R Rc   are the densities and sound 
speeds of the ghost fluid. 

The ghost fluid states can be chosen by solving Equa-
tion (7) and (8). The simplest case is that the ghost fluid 
pressure be defined as the interface pressure, i.e. 

,L I Rp p p p 
I  .              (9) 

Hence the integral in Equation (7) and (8) become zero 
and the ghost fluid velocity is 

,L I Ru u u u 
I  .              (10) 

Furthermore, one can find that any ghost fluid density 
can satisfy Equation (5) or (6). 

For Equation (5) or (6), Hu [6] had considered two al- 
gorithms. The focus is on defining the ghost fluid states 
while the pressure and velocity in the real fluid side are 
taken for granted, except for the correction made to the 
density at the real fluid nodes next to the interface to 
overcome the overheating. Indeed, the real fluid states 
next to the interface instead of the ghost fluid states 
should be predicted by solving a Riemann problem [8]. 
This will result in the complete redefinition of the real 
fluid next to the interface. In doing so, one will find that 
the nonphysical reflection for the shock impedance 
matching problem can be greatly and further suppressed. 

For medium 1, we take Ip  and Iu  as the pressure 
and velocity at nodes , i 1i  , , For medium 2, 
we also take 

2,i 
Ip  and Iu  as the pressure and velocity at 

nodes 1i  , ,, 1i i   . The ghost fluid density is based 
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on isentropic fixing. Here, we shall consider two cases: 
Case 1: For medium 1, the predicted isobaric entropy  

L

I L
IL

IL

p B
S 


  at the interface is employed to fix the real  

fluid density at point i and the ghost fluid density at point 
, . A similar procedure is used for computa-

tion in medium 2. This is the RGFM [8] which can be 
seen from Figure 1. 

1i  2,i  

Case 2: For medium 1, one employs isobaric entropy  

1
1

1
L

i
i

i

p B
S 







 L  to fix the real and ghost fluid density.  

The rest of the procedures are the same as those for Case 
1. We take this method as SGFM which can be seen from 
Figure 2. 

5. The Accuracy of SGFM and RGFM 

We only consider the gas–gas Riemann problem. The 
accuracy of MGFM had been discussed [13]. It may be 
noted that the accuracy discussed should be interpreted 
as how accurate the boundary conditions are implicitly 
imposed at the material interface and how accurate the 
interface states are approximated by the GFM technique; 
it should not be explained or analyzed as the accuracy of 
final numerical solution and/or the numerical scheme 
used because the detailed numerical scheme is never in- 
volved in the discussion. An approximate Riemann 
problem solver (ARPS) based on a doubled shock struc- 
ture is used for the Riemann problem. For the SGFM 
 

 

Figure 1. Isobaric fixing for RGFM. 
 

 

Figure 2. Isobaric fixing for SGFM. 

applied to wing error the Riemann problem (4), the follo
estimations are held [13] 

3

3

max 1 , 1

max 1 , 1

e e
S e I I
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e e
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I I
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p p
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p p

p p
p p O

p p

               

  

   


       

      (11) 

Here, e
Ip  and e

Iu  are the exact interfacial pressure 
and velo , Scity Iu  and S

Ip  are the interfacial pressure 
and velocity from ARPS.

For SGFM, we have 
 

S
R Ip p  , S

R Iu u  , S
L Ip p   

and S
L Iu u  , the pressure and veloc  

node  the interface are also redefined. Following 
conclusions are held for the SGFM when applied to the 
Riemann problem (4). 

Theorem 1. The foll

ity at the real fluid
 next to

owing error estimates are held for 
th

(A) 

e respective GFM Riemann problems (5) and (6) using 
the SGFM 
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 SA SB
I Iu u  and  SA SB

I Ip p  
re of the 

are the exact interfacial 

rem 2.1 [13] to the GFM Rie-
m

velocity and pressu GFM Riemann problem (5) 
and (6) using the SGFM. 

Proof: Applying Theo
ann problem (5), one gets 
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2
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1
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L
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p
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p

 
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 

   

 

     

 

   
 

       


  
 

       

  (12) 

According to SGFM, one has S
R Ip p  , S

R Iu u   and 
the pressure and velocity at the real f o the 
interface are S

luid node next t

L Iu u , S
L Ip p . Equation (12) can be 

expressed as 
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2

2
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Using Equation (11), one has 

2SA
SA e p 

3
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e

I I
I I S
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p
u u O O
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 
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SA e I I
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pp

  
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

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      (15) 

For the GFM Riemann problem (6), in a similar way, 
on

onservation Errors 

rvation for each me- 

e can show that error estimates (C) and (D) in Theo- 
rem 1 are true. 

The states of the ghost cell for RGFM are in accord 
with those for SGFM except the density. So Theorem 1 is 
also true for RGFM. It is shown that the solution of the 
SGFM and RGFM approximate the exact solution to at 
least second-order accuracy in the sense of comparing to 
the exact solution of a Riemann problem at the material 
interface. 

6. The C

Both overall conservation and conse
dium will be evaluated using Equation (1) over the com- 
putational domain  ,A Bx x . We denote RHSL(n), 
RHSR(n) and RHST(n  conservation errors for the 
medium on the left, right side of the interface and over 
the whole computational domain, respectively, as fol- 
lows:  

) as the
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11
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



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  (18) 

Here, Ix  denotes the interface position; AF  and 

BF  are es at Aflux x  and Bx , respectively. ILF  and 

IRF  are fluxes at the respective left and right side f the 
rface. 
he overall average conservation error can be taken as 

s o
inte

T

   
 60 11 K

60 1

error
60 l K

K RHST l
 

          (19) 


We shall use two cases to study the cons
of the RGFM and SGFM. 

ervation errors 

Case 1: a strong shock impacting on an air-air inter- 
face (i.e., Problem 1 in Section 7) 

From Table 1, it is clear that very large errors incur 
for the MUSCL-based MGFM-FT in the first 60 steps for 
this specific case, while these are suppressed very well 
by the MUSCL-based SGFM-FT and RGFM-FT. The 
conservative errors of the RGFM-FT and SGFM-FT are 
tend to zero faster than the MGFM-FT. 

Case 2: This is a problem of a water column separated 
by the air and oscillating in the middle of a closed tube 
[8]. The problem is sketched in Figure 3. The initial 
status of the air and water are defined as 

 
 
, , , ,

0.001,1,1,1.4 0 1

u p B

x

 
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 
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0.1

1,1,1,7,3000 0.1 0.1

0.001,1,1,1.4 0 0.1 1

x

x

 


 
  

,

,

 
 

With the fluids moving to the right, the air on the left 
of the water column expands while the air on the right of 
the water column is compressed. The pressure decreases 
at the former and increases at the latter; this leads to the 
deceleration and eventually stagnation of the fluids in the 
tube. Then the fluids move in the reverse direction due to 
the pressure gradient, and so on with the water column 
oscillating. Pressure waves are evident in the tube due to 
the impact of the air on the end boundaries and interact- 
tion with the water column. The conservation errors of 
the air mass M(t) are given as 

     
 

0a am t m
M t

m


            (20) 

0a

 
Table 1. The conservation errors of the R

T and MGFM-FT. 
GFM-FT, SGFM- 

F

K RGFM-FT SGFM-FT MGFM-FT 

0 2.5679419E−004 1.0022954E−003 0.9505743 

1 5.8 4 7.6 4 3.4 2

1.9 3

678547E−00 730609E−00 564280E−00

2 1.8233535E−004 2.2801129E−004 138482E−00

3 1.4738074E−004 1.9033586E−004 2.1914005E−002

4 8.1406301E−005 9.2554928E−005 2.5471797E−003

5 7.0434890E−005 7.9106984E−005 2.3205920E−003

 

 

Figure 3. Initial status of the oscillating water column pro- 
blem. 
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where  am t  is the total mass of the air in the tube at 
time t. It can indeed be observed that the conservation 
errors associated with the air mass appear to be oscillat- 
ing similar to that observed in [8]. Figure 4(a) depicts 
that MGFM has an oscillatory M(t) with a much larger 
trend of net conversion of the air mass into water when 
 

t

M
(t

)
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(c) 

Figure 4. Comparison of c rvation errors amo  the 
MGFM, the RGFM and the SGFM for Case 2 in Section 6. 

onse ng

(a) the MGFM-FT and the SGFM-FT; (b) the RGFM-FT; 
(c) the SGFM-FT. 

compared to RGFM. Figures 4(b) and (c) show that 
RGFM and SGFM have the same time evolution of the 
conservation errors. 

The wall pressure coefficients are given as 

    01,
1,

p x t p
P x t
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Figure 5 shows the time evolution of the pr
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Figure 5. Time evolution he pressure coefficients at 
boundaries for Case 2 in S n 6. Solid line: at the left 
boundary; dashed line: at the right boundary. 

of t
ectio
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ficients at the wall boundaries calculated using MGFM, 
RGFM and SGFM. Figure 5(c) shows that there is a in- 
crease of the pressure amplitude with time for MGFM, 
while the pressure amplitude with RGFM and SGFM is 
changeless on the whole as show in Figures 5(a) and (b). 

7. Applications 

For all the one-dimensional problems the computational 
[0,1] with 201 nodes uniformly dis-



This problem is solved at time . The shock 
limiter is used [11]. Figures 6(a)-(c) show that the den- 
si d by t

For this case, a very strong shock is physically re- 
flected back into the air. Figures 7(a)-(c) show that the 
den



This test has solution consisting of a rarefaction wave, 
two contact discontinuities and three shock waves. The  

domain is taken as 
tributed unless stated otherwise. 

Problem 1: Gaseous shock in impedance-matching 
medium [8]. In this case a strong shock on the left side of 
the interface impacts on a gas-gas interface; The shock 
strength is 100 and the initial position of the shock is 
same as the interface, which is located at x0 = 0.2. The 
states on the left and right sides of the interface are de- 
fined respectively as 
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
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0.06t 

ty, velocity and pressure obtaine he MUSCL- 
based SGFM-FT method compare to the analytical solu- 
tion at time 0.06. 

Problem 2: Strong shock impacting on a gas-water 
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Figure 6. Problem 1. 
 
MUSCL-based SGFM-FT method is used. Figures 8(a)- 
(c) describe the surprisingly good solution profiles at 
time 0.00028. 
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Figure 7. Problem 2. 

8. Conclusion 

In this paper, we developed a kind of GFM based on 
Riemann solutions. The R M is one of this type of 
GFM. A simplified front tracking algorithm had been 
used to track contact discontinuity. It is noted that dif- 
ferent isentropic entropy can produce little effect on the 
conservation error and this kind of GFM has the property 
of reduced conservation error. A rigorous analysis is car-  
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Figure 8. Problem 3: The “o” denotes the numerical results. 
The solid line denotes the exact solution. 
 
ried out on the accuracy of the GFM when applied to the 
gas-gas Riemann problem. It is shown that at the mate- 
rial interface this type of GFM solution approximates the 
exact solution to at least second-order accuracy in the 
sense of comparing to the exact solution of a Riem n an
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problem. When the shock tor is used, discernible
non-physical hump and trough which can not be avoided
in shock impedance matching (-like) problems [7,8] do
not appear for our proposed method. The ghost cell
nique can be used for simulating compressible multi-
medium flow. 
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