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ABSTRACT 

In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new 
line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding original ones and 
give an adequate initial step size at each iteration. It is proved that the resulting line search algorithms have global con- 
vergence under some mild conditions. It is also proved that the search direction plays an important role in line search 
methods and that the step size approaches mainly guarantee global convergence in general cases. The convergence rate 
of these methods is also investigated. Some numerical results show that these new line search algorithms are effective in 
practical computation. 
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1. Introduction 

Consider an unconstrained minimization problem  

 min , ,nf x x R             (1) 

where  is an n-dimensional Euclidean space,  nR
1: nf R R  a continuously differentiable function. 

Throughout this paper, we use    g x f x   as the 
gradient function of  f x . Given an initial point 0x , 
line search methods for solving (1) take the form 

1 , 0,1,2,k k k kx x d k ,              (2) 

where kx  is the current iterate, k  a search direction, 
and 

d

k  a step size. Let *x  be a minimizer of (1) and  
thus be a stationary point that satisfies  * 0g x  . We 

denote  kf x  by , kf  *f x  by *f , and  kf x   

by kg , respectively. 
In line search methods, there are two things to do at 

each iteration. One thing is to find a search direction k , 
and the other is to choose the step size 

d

k  along the 
search direction . k

On the one hand, the search direction  is generally 
required to satisfy the descent condition  

d

kd

0,T
k kg d                  (3) 

which guarantees that k  is a descent direction of d
 f x  at kx . In order to ensure the global convergence 

of line search methods, we often require that the follow- 
ing condition holds,  

,
T
k k

k k

g d
c

g d
 


             (4) 

where  0,1c  is a constant. The condition (4) is 
sometimes called the angle property (e.g., [1,2]). The 
choice of search direction k  plays an important role in 
designing line search methods (e.g., [3]). There are many 
techniques for choosing the search direction  at the 
kth iteration (e.g., [2,4,5]). 

d

kd

On the other hand, we should choose k  to satisfy 
some line search rules. Line search rules can be classified 
into two types, exact line search rules and inexact line 
search rules. This paper is devoted to the case of inexact 
line search rules. There are three well-known inexact line 
search rules [6-9]. 

Armijo rule. Set scalars  > 0, 0,1ks   , and 
 0,1 2  . Choose k  to be the largest   in 

 2, , , ,k k ks s s    such that  

  .T
k k k k kf f x d g d               (5) 

Remark. The original Armijo line search rule is to set 

ks s  with s  being a constant [8]. 

Goldstein rule. A fixed scalar 1
0,

2
 

 

  is selected,  
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and k  is chosen to satisfy  

 
1k k k k

T
k k k

f x d f

g d


. 


 

           (6) 

It is possible to show that if  is bounded below, 
then there exists an interval of step sizes k

f
  for which 

the relationships above are satisfied, and there are fairly 
simple algorithms for finding such a step size through a 
finite number of arithmetic operations. 

Wolfe Rule. Choose k  to satisfy  

  T
k k k k k k kf f x d g d             (7) 

and 

  ,
T T

k k k k k kg x d d g d             (8) 

where   and   are some scalars with 
1

0,
2

   
 

  

and .  ,1 
Lemma 1.1 ([1]) For the Wolfe rule, we assume that 

there is a scalar M  such that  f x M  for all  

nx R . Let 
1

0,
2

   
 

 and , and assume that 

. Then there exists an interval 

 ,1 

< 0T
k kg d 1 2,b b  with 

, such that every 10 b  2b  1 2,b b   satisfies (7) and  

(8). 
The above three line search rules can guarantee the 

existence of k  under some mild conditions. However, 
how to find k  is still a question. Especially, how to 
choose the initial step size ks  in the Armijo rule is also 
very important in practical computation. In fact, how to 
solve the inequalities (6), (7), (8) is also a problem in 
computation. Some implementable modified Armijo ru- 
les were proposed [10-13]. Moreover, some nonmono- 
tonic line search methods were also investigated [14-17]. 
However, can we find an approach to solve (6), (7), and 
(8) easily and economically? Sometimes, we first set an 
initial step size ks  and substitute the test step size 

ks   into the inequalities (6), (7), or (8); if this   
satisfies the inequalities, then we stop and find a step size 

k  ; otherwise, we need to use back-tracking or for- 
ward-tracking to adjust the test step size until we find an 
accepted step size k . 

In order to find k  easily and economically, we need 
to solve three problems. One problem is how to estimate 
the initial step size ks . The second problem is how to 
adjust the test step size when the test step size doesn’t 
satisfy the inequalities. The third problem is whether we 
can extend the accepted scope of step sizes to a wider 
extent. Our research is focused on the second and third 
questions. 

In this paper, we propose several line search rules for 
solving unconstrained minimization problems. The modi- 

fied line search rules used in the methods can extend the 
range of acceptable step sizes and give a suitable initial 
step size at each iteration. It is proved that the resulting 
line search methods have global convergence under some 
mild conditions. It is also proved that the search direction 
plays an important role in line search methods and that 
the step size rule mainly guarantees the global conver- 
gence in general cases. Numerical results show that the 
resulting algorithms are effective in practical computa- 
tion. 

The remainder of the paper is organized as follows. In 
Section 2, we describe the modified line search rules and 
its properties. In Section 3, we analyze the global con- 
vergence of resulting line search methods, and in Section 
4, we study further the convergence rate of the new line 
search methods. Numerical results are reported in Sec- 
tion 5. 

2. Modified Line Search Rules 

We first assume that 
(H1). The function  has a lower bound on  f

    0 0 0
nnL x R f x f x   , where x R  is given. 

(H2). The gradient    g x f x   is uniformly con- 
tinuous in an open convex set B that contains . 0L

Sometimes, we further assume that 
(H3). The gradient g  is Lipschitz continuous in an 

open convex set B that contains , i.e., there exists 
 such that  

0L
0L 

    , , .g x g y L x y x y B            (9) 

It is apparent that (H3) implies (H2). 
In the following three modified line search rules, we 

define  

  1
min , ,

2

T
k k

k k
k

g d
w d

d
 

    
  

      (10) 

where  0,    is a variable. 
Modified Armijo Rule. Set scalars  0, 0,1kL     

and 
1

0,
2

 
 


 , and set 

2
.

T
k k

k

k k

g d
s

L d
   Let k  be 

the largest   in  2, , , ,k k ks s s    such that  

   .k k k k kf f x d d w           (11) 

Modified Goldstein Rule. A fixed scalar 
1

0,
2

   
 

  

is selected, and k  is chosen to satisfy  

     1 .T
k k k k k k k k k k kg d f f x d d w         

 (12) 

Modified Wolfe Rule. The step size k  is chosen to 
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satisfy  

   k k k k k k kf f x d d w k          (13) 

and  

  ,
T T

k k k k k kg x d d g d            (14) 

where   and   are some scalars with 
1

0,
2

   
 

 

and .  ,1 
Apparently, if k  satisfies (5), or (6), or (7) and (8), 

then k  also satisfies (11), or (12), or (13) and (14). We 
may obtain the conclusion from the fact that  

  .T
k k k k k k kd w g d     

Therefore, if (H1) holds, then the three modified line 
searches are feasible. As a result, the modified line 
searches can extend the range of acceptable step sizes 

k . 
For the above three modified line search rules, we de- 

note the three corresponding algorithms by Algorithm 
(NA), Algorithm (NG), and Algorithm (NW), respec- 
tively. 

3. Global Convergence 

In this section, we will prove that if (H1) and (H2) hold, 

k  satisfies (3), kd   is chosen so that (11), or (12), or 
(13) and (14) hold. The related algorithms generate an 
infinite sequence  kx , then  

lim 0.
T
k k

k
k

g d

d


             (15) 

Theorem 3.1 Assume that (H1), (H2), and (3) hold, 

 kL  satisfies  with  and 0 00 km L M   0m 0M   

being positive numbers. Algorithm (NA) with modified  
Armijo rule generates an infinite sequence  kx . Then  

(15) holds. 
Proof. For Algorithm (NA), by setting  

   1 2, ,k k k kK k s K k s      

and by (11), we have  

 1 1,k k k k k k ,f f s d w s k K         (16) 

 1 2,k k k k k k .f f d w k     K     (17) 

Since k  is the largest one to satisfy the modified 
Armijo rule, we will have 2,k k ks k K      , and 
then k    makes the inequality sign of (11) 
change, i.e.,  

    2, .k k k k k k k kf f x d d w k K            

By the mean value theorem on the left-hand side of the 
above inequality, we can find  0,1k   such that  

 
 

 
2, .

T

k k k k k k

k k k k

k k k k

T
k k k

g x d d

f f x d

d w

g d k K

    

 

    

 

 

  



   

 

Therefore,  

  2, .
T T

k k k k k k kg x d d g d k K           (18) 

By (H1), (3), and (11), it follows that  kf  is a non- 
increasing number sequence and bounded from below, 
and it has a limit. Furthermore, we get from (11) that 

 
0

,k k k k
k

d w 




          (19) 

and thus,  

   
1 2

.k k k k k k k k
k K k K

s d w s d w 
 

        (20) 

In order to prove (15), we use contrary proof to ab- 
surdity. Assume that there exists an  and an infi- 
nite subset 

0
 3 0,1,K    such that  

3, .          (21) 
T
k k

k

g d
k K

d
   

Since  1 2 0,1,K K  

3

, it is obvious that at least  

one of 1K K  or 2 3K K  is an infinite subset. 
If 1 2K K  is an infinite subset then by (21) and (20) 

we have  

 

 

   

1 3

1 3

1

1 2

0 0

min ,
2

.

k K K

k k k k
k K K

k k k k
k K

k k k k k k k k
k K k K

M M

s d w s

s d w s

s d w s d w 







 

 
 
 





 

 







 





 


 

The contradiction shows that 1 3K K  is not an infi-
nite subset and 2 3K K  must be an infinite subset. 

By (21) and (20), we have  

 

 

   

2 3

2 3

2

1 2

1
min ,

2

.

k k k k
k K K

k k k k
k K K

k k k k
k K

k k k k k k k k
k K k K

d d

d w

d w

s d w s d w

 

 

 

 







 

 
 
 





 

 







 







 

Therefore,  
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 2 30k kd k K K    .          (22) 

By the Cauchy-Schwartz inequality and (18), we ob- 
tain  

 
 

  

  2 31 ,

k k k k k

k k k k k k

k

T

k k k k k k

k

T
k k

k

g x d g

.

g x d g

d

d

g x d g

d

g d
k K K

d

  

  

  



 

 


 



   

d



 

By , (22), and the above inequality, we have  2)(H

 2 30 ,
T
k k

k

g d
k K K k

d
     ,  

which also contradicts (21). The contradiction shows that 
(15) holds. 

Theorem 3.2 Assume that (H1), (H2), and (3) hold. 
Algorithm (NG) with the modified Goldstein line search 
generates an infinite sequence  kx . Then (15) holds. 

Proof. By using the mean value theorem on the left- 
hand side inequality of (12), there exists  0,1k   such 
that  

   1 1
T T

k k k k k k k k k k k ,g x d d f f g           d

.

 

and thus,  

   1
T T

k k k k k k kg x d d g     d      (23) 

By the right-hand side of (12) and (H1), it follows that  
 kf  is a monotone decreasing sequence and bounded  

below, and thus it has a limit. This shows that  

 
0

.k k k k
k

d w 




           (24) 

Using the contrary proof, if (15) doesn’t hold, then  
there exists an infinite subset  and an  0,1,K  

0  such that  

, .           (25) 
T
k k

k

g d
k K

d
   

By (25) and (24), we obtain  

 

 
0

1
min ,

2

,

k k k k
k K

k k k k
k K

k k k k
k

d d

d w

d w

 

 

 









 
 
 



 











 

and thus,  

 0 , .        (26) k kd k K k    

By the Cauchy-Schwartz inequality and (23), we have  

 
 

  

.

k k k k k

k k k k k k

k

T

k k k k k k

k

T
k k

k

g x d g

g x d g d

d

g x d g d

d

g d

d

 

 

 



 

  


 





 

By (26) and (H2), and noting that  
 0 ,k k k k kd d k K k       and the above 

inequality, we have  

 0 ,
T
k k

k

g d
k K k

d


    ,  

which contradicts (25). The contradiction shows that (15) 
holds. 

Theorem 3.3 Assume that (H1), (H2), and (3) hold. 
Algorithm (NW) with modified Wolfe rule generates an 
infinite sequence  kx . Then (15) holds. 

Proof. Using contrary proof, if (15) doesn’t hold, then 
there exists an infinite subset  and an 

 such that (25) holds. By (H1) and (13), it follows 
that (24) holds, and thus (26) holds. 

0,1,K  
0

By the Cauchy-Schwartz inequality and (14), we have  

   

1

11 1 .

k k

T T
k k kk k k k k

k k

g g

g g dg g d

k

g d

d d








  
   

d

 

By (H2), (26), and the above inequality, we have  

 0 ,
T
k k

k

g d
k K k

d
,     

which is a contradiction to (25). The contradiction shows 
that (15) holds. 

Theorem 3.4 Assume that (H1), (H3), and (3) hold, 
Algorithm (NA) with 0 00 km L M   , or Algorithm 
(NG), or Algorithm (NW) generates an infinite sequence 
 kx . Then there exists  and  1 0,1,k   0 0   such 
that  

2

1 0 1, .
T
k k

k k
k

g d
f k k

d


 
f     

 
     (27) 

Proof. Since (H3) implies (H2), the conclusions in 
Theorems 3.1, 3.2, and 3.3 are also true. We will use 
these conclusions and notations in the proofs of these 
theorems to our proof. 

For Algorithm (NA), by (H3), the Cauchy-Schwartz 
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inequality, and (18), we have  

 

  
 

2

21 , ,

k k k k k k k

T

k k k k k

T
k k

L d g x d g d

g x d g d

g d k K

    

  



   

  

   

 

where 2K  and k  are defined in the proof of Theorem 
3.1. Thus,  

  22
1 ,

T
k k

k

k

g d
k K

L d
      .       (28) 

By (17), (28), and the proof of Theorem 3.1, we ob- 
tain  

   
2

1

1 1
min ,1 ,

2

T
k k

k k
k

g d
f f

L L d

   


    
       



1.

(29) 

where  By (16) and the proof of Theorem 
3.1, we have  

2 ,k K k k 

2

1 1 1
0 0

1
min ,1 , , ,

2

T
k k

k k
k

g d
f f k K

M M d




   
        

k k  

(30) 

where 1K  is defined in the proof of Theorem 3.1. Set  

0

0 0

1 1
min min ,1 , min ,1 ,

2 2L L M M



   
         

    

  

it follows that (27) holds. 
For Algorithm (NG), by (H3), the Cauchy-Schwartz 

inequality, and (23), we have  

 

  

2

,

k k k k k k k k

T

k k k k k k

T
k k

L d g x d g d

g x d g

g d

  

 



   

  

 

d  

and thus,  

2
.

T
k k

k

k

g d

L d

                (31) 

By (12), (31), and Theorem 3.4, we have  
2

2

1 1min ,1 , .
2

T
k k

k k
k

g d
f f

L L d

 


         
k k  

By setting  
2

0 min ,1 ,
2L L

     
 

 

it follows that (27) holds. 
For Algorithm (NW), by (H3), the Cauchy-Schwartz 

 
2

1 T
k k .k

k

g d



 

L d
         (32) 

By (13), (32), and Theorem 3.1, we have  

 

inequality, and (14), we can prove that  

2
1 1 Tg d

1 1min ,1 , .
2

k k
k k

k

f k k
L L d

      f        
(33) 

By setting  

 
0

1 1
min ,1 ,

2L L

  
    

 
 

it follows that (27) holds. 
that (H1), (H2), and (4) hold, Theorem 3.5 Assume 

Algorithm (NA) with 0 00 km L M   , or Algorithm 
(NG), or Algorithm (NW) finite sequence  generates an in
 kx . Then  

lim 0.k
k

g


              (34) 

Proof. By Theorems 3.1, 3.2, and
(1

 3.3, we obtain that 
5) holds. By (4), when k  , we have  

2 2

2 22 0.
T Tg d g d   k k k k

k k
k k k

c g g
d g d


            

 

Therefore, (15) holds. 
 that (H1), (H3), and (4) hold, 

A
Corollary 3.1 Assume

lgorithm (NA) with 0 00 km L M   , or Algorithm 
(NG), or Algorithm (NW) finite sequence  generates an in
 kx . Then (34) holds. 

oof. By Theorem 3.5 and (4), we have  Pr
2

T
k kg d

f f 
 

 1 0

2

2 22
0 0

k k
k

T
k k

k k
k k

d

g d
g c g

d g
 

   
 

 
     

 

By (H1) and the above inequality, we obtain that (34) 
ho

vergence rate, we restrict our 

um

.

lds. 
Remark: Because (H3) implies (H2), it is obvious that 

the conditions of Corollary 3.1 imply the conditions of 
Theorem 3.5. Thus, Corollary 3.1 holds. 

4. Convergence Rate 

In order to analyze the con
discussion to the case of uniformly convex objective 
functions. We further assume that 

(H4): f  is twice continuously differentiable and uni- 
fo nvrmly co ex on nR . 

Lemma 4.1 Ass e that (H4) holds. Then (H1) and 
(H3) hold,  f x  has a unique minimizer *x , and there 
exists 0 < m M  such that 

 2 2
, , ;T nm y y M y x y R      (35) 2 f x y 
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   2 2* * *1 1
, ;

2 2

converges to *f  at least -linearly. From the last 
inequality, we g  that

Q
et   kf

nx R  m x x f x f x M x x     

(36
 converges to *f

) 

      2
,

T 2
M x y g x g y x y m x y       

 at least 
-linearly [18R ]. 

By setting 
  (37) 

, ;nx y R where  and thus  

   2 2* * * , .nT
M x x x x x g m x x x R     (38) 

By (37) and (38), we can also obtain from the Cau
Schwartz inequality that  

chy- 

   M x y g x g y m x y         (39) 

and  

 * * , .nM x x g x m x x x R        (40) 

Its proof can be seen from (e.g., [18,19], etc.). 
case, the Lipschitz constant of the gradient function 

In this 
L  

 f x  is  M . 
Theorem 4.1 Suppose tha H4) and (4) hold, any of 

e alg th
t (

the thre ori ms generates an infinite sequence  kx . 
Then  kx  converges to *x  at least R -linearly. 

Proof. By Corollary 3.1 and Lemma 4.1, it follow  
 k

s that
x  erges to *conv x . By Theorem 3 5, (4) and . (40), 

we have  

  

2
T

k kf 1 0

2

2

0

222 2 2 *
0 0

2 2
*02 .

k k

k

T
k k

k
k k

k k

k

g d
f

d

g d
g

g d

c g c m x x

c m
f f x

M





 





 
    

 

 
    

  

 

 

By the above inequality and setting 
2 2

02
c m

M


  ,  

we can prove that 1  . In fact, by T d heorem 3.5 an
(39), and noting th , we can obtain  at L M

0 ,
L M

 
                (41) 

and thus,  
2 2 2 2

2 20
2

2 2
2 1

c m c m
c .

M M

      

By setting 21    , we have  

*

From the above first inequality, we can say that 

   
     

* *

2 * 2
1 0

1

.k
k

x

f f x f f x



 



    
 

 2
1k kf f f f x  

 kf  

*
02 f f x

m



 , it follows that  

    
*

2*
22 f f x

x f
0* 2 2 2 ,k kx f

m mk k x       

an


 

d thus 
*x x ,k

k   

which shows  

 

that  kx *x converges to  at least 

5. Numerical Results 

we i retical 
e he gl

ge ted line search methods r some 
ion, we will stud nume- 
hms with the ne rch 

tively. 

ion is  

R -linearly [18]. 

a

ec

In the above sections, nvestigated the theo pro- 
p rties and analyzed t obal convergence d conver- 

nce rate of rel
 an
unde
y the 

w line sea
mild conditions. In this sect
rical performance of algorit
approaches. 

First, we choose some numerical examples to test the 
Algorithms (NA), (NG), and (NW) and make some com- 
parisons to the algorithms with the original line searches. 
The original line search methods are denoted by OA, OG, 
and OW, resp

The numerical examples are from [12]. We use the 
same symbols to denote the problems. For example, (P5) 
denotes Problem (P5) in [12]. For each problem, the li- 
miting number of functional evaluations is set to 10,000, 
and the stopping condit

610 .kg                 (42) 

We choose a portable computer with a Pentium 1.2 
MHz CPU and Matlab 6.1 to test our algorithms. The 
parameters are set to 0.38  , 0.87  , 0.618  , 

0 1L  , and  

   1 1

2

1

,

T

k k k k

k

x x g g
L

x x

 



 



       (43) 

1.  

k k

for
Algorithm : Step 0. Given paramete
 k

 (NA) rs 0.38  , 
0.87  , and : = 0; 

Step 1. If 
set k

| |kg 6| 10  then stop else takin

k

g 

kd g  ; 
S  Ftep 2. ind step size k  by using the modi - 
ijo rule; 

. Set 

fied Ar
m

Step 3 k k1k kx x d    and set : 1k k 
ep 1. 

, go to 
St

For the Goldstein and the modified Goldstein rules, we 
us e e the following procedur to find the step size. 
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m (NG): Step 0. Given parameters Algorith 0 2   
and 0.5  , s

Step 1
et k: = 0; 

. If then stop else taking 6| || 10kg   

k kg  ; 
Step 2. Find step size k

d
  by using the following pro- 

ce

 5.1. Set 

dure: 

Procedure
2

k k
k

T

k k

g d
ich   

is

Step 21. If , then 

s
L d

     in wh  kL

 defined by (43). Set two indices 0dec   and 
0inc  . 

1inc dec  :  , 0 0:  , 

k ks  , and set 0inc  , 0dec  ; 
 Step 22. If (12) holds then k 

lit
  and stop; 

y of lds and 
the lef oesn’t hold, then

Step 23. If the right-hand inequa (12) ho
t d  0:    and set 1inc  , 

an 1; 
Step  left-ha  inequa y of (12) holds and 

th

d go to Step 2
24. If the nd lit

e right doesn’t hold, then :    and set 1dec  , 
and go to Step 21; 

Step 3. Set 1k k k kx x d   t : 1k k  o 
Step 1. 

 and se  go t

p size. 
): Step 0. Given parameters

,

For Wolfe and modified Wolfe rules, we use the fol- 
lowing procedure to find the ste

Algorithm (NW  0 2   
and 0.5  , s

Step 1
et k: = 0; 

. If then stop else taking 

ind step sStep 2. F ize k  by using the following 
procedure: 

6| || 10kg   

k kg  ; d

Procedure 5.2. Set 
2

T
k k

k

k k

g d     in which   s
L d

is o indices 

kL

 defined by (43). Set tw  and 0dec 
0inc  . 

Step 21. If 1inc dec  , then :  , 0 : 0  , 

k s= , and k set 0inc  , 
3) and (14) h

0dec  ; 
Step 22. If (1 old, then k   

23. If (1 s 4) doe

sn’t

 and stop;
Step 3) hold and (1  hold, then 

0:    and set 1inc  , and go to S  tep 21;
Step 24. If (14) holds and (13) doesn’t hold, then 
:   and set dec , and go to Step 21; 1
Step 3. Set 1k k k kx x d    and set : 1k k  , go to 

Step 1. 
 experiments, w

n see from Table 1 that the m Wolfe line 
ap mputation. In fact, 
N

In numerical e take k kd g 
We ca

. 
odified 

proach is the best one in practical co
A, NG and NW are all better than OA, OG, and OW. 

This shows that the modified line searches are effective 
in practical computation and significantly reduce the 
number of functional evaluations and iterations when 
reaching the same precision. Moreover, we found that the 
new modified line approaches can be used to any descent 
methods. For example, we can take quasi-Newton direc- 
tion k k kd H g   in the line search methods and use 
these modified line search approaches to find a step size.

s and functional evaluations. 
 

Table 1. The number at

n 

 of iter ion

P OA OG OW NA NG NW 

P5 2 6/7 6/7 8/12 7/11 7/10 6/7 

P13 

2  23/35 21/29 

1  

5  1  1  1  

CPU - 189s 198s 135s 121s 117s 93s 

4 23/35 21/32 20/29 17/20 16/21 15/22 

P14 4 36/52 32/48 32/48 3/32

P16 4 14/63 16/67 14/62 16/43 17/51 11/29 

P20 9 12/17 12/19 13/15 11/14 11/14 11/12 

P21 16 18/25 18/27 18/26 12/24 12/27 11/20 

P23 8 30/41 33/49 31/45 25/34 23/36 24/32 

P24 20 52/64 55/71 50/58 35/46 33/42 28/38 

P25 50 11/123 12/118 10/67 11/21 12/23 11/18 

P26 50 14/30 16/42 15/38 12/28 12/24 11/19 

P30 20 13/22 13/26 13/23 11/26 11/21 10/18 

P21 000 98/563 89/483 76/428 67/310 54/258 48/211 

P21 000 43/721 26/565 18/475 76/426 78/384 68/236 

P23 1000 120/798 117/695 120/572 73/275 76/248 64/198 

P23 5000 185/775 167/883 151/663 68/85 61/83 42/65 
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If we  like , and  take kL 0L 1

1

1

,     k k
k

k k

g g

x x







      ) 

f , and u  to repla ) in Pro 5.2, 
we h e results in Table 2. F  Table 3, w ound 
th stimatio ) seems  that (44) in many 
sit s. Actua  Cauchy neq , we  

 2. The number of iteration

P n O

L     (44

or 1k  se (44) ce (43 cedure 
ave th

at the e
 

n (43
rom

better
e f

uation lly, by -Schwartz i uality

 
Table s and functional evaluations. 

OW NA NG NW A OG 

P5 2 8/12 7/11 7/10 7/11 7/12 7/11 

P13 4 18/25 18/25 

P14 

1  

5  1  1  1  

1  1  1  1  

23/35 21/32 20/29 19/23 

4 36/52 32/48 32/48 25/37 25/37 27/31 

P16 4 14/63 16/67 14/62 16/45 18/53 12/32 

P20 9 12/17 12/19 13/15 11/18 11/19 12/19 

P21 16 18/25 18/27 18/26 14/31 12/25 14/28 

P23 8 30/41 33/49 31/45 26/37 25/37 26/38 

P24 20 52/64 55/71 50/58 39/48 32/45 29/43 

P25 50 11/123 12/118 10/67 11/32 12/34 12/28 

P26 50 14/30 16/42 15/38 12/35 13/44 14/27 

P30 20 13/22 13/26 13/23 12/27 13/26 12/26 

P21 000 98/563 89/483 76/428 69/354 58/263 53/265 

P21 000 43/721 26/565 18/475 78/433 81/420 73/263 

P23 000 20/798 17/695 20/572 94/321 85/291 69/238 

P23 5000 185/775 167/883 151/663 72/120 63/72 43/69 

CPU - 189s 198s 135s 132s 141s 128s 

 
Tab e numb ations and functional e ns. le 3. Th er of iter valuatio

P n OA OG OW NA NG NW 

ARWHEAD 10  46/198 42/137 32/120 26/64 25/47 25/54 4

DQDRTIC 104 15/43 14/28 

ENG L1  

 

P   

 33/68 

S  

CPU  125s 116s 108s 97s 88s 72s 

18/43 17/38 15/32 16/31 

VA 104 18/36 17/29 15/28 12/25 12/25 12/25 

VAREIGVL 104 21/28 18/32 17/31 16/25 17/32 15/28 

WOODS 104 19/29 17/26 15/24 17/32 16/43 16/41 

LIARWHD 104 32/76 35/88 31/45 28/46 28/52 28/34 

MOREBV 104 76/86 72/124 73/97 72/97 72/97 60/81 

NONDIA 104 32/44 28/52 26/42 22/36 25/48 23/34 

TQUARTIC 104 29/43 27/38 25/31 24/36 24/43 24/43 

OWELLSG 104 57/126 59/119 53/97 48/126 53/92 42/77 

QUARTC 104 53/127 42/116 34/98 32/74 31/66 

SCHMVETT 104 28/75 28/92 25/82 24/38  25/42 23/38 

SPARSQUR 104 54/93 47/110 48/90 42/73  45/73 40/65 

ROSENBR 104 31/95 29/85 25/82 29/66 25/78 24/64 

TOINTGSS 104 26/67 28/73 26/75 24/56 21/52 24/48 
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have  

  1 1 1
2

11

,

T

k k k k k k

k kk k

x x g g

xx x

  



 



 

hows that (43) can produce a larger initial step 

g g 
x 

which s
size ks  than (44) does. 

In , in the beginning of iterations, larger step size 
can quicken the convergence of resulting algo ms for 
solving well conditioned middle scale problems. For lar- 

m

an extend the
 to a wider extent and 

p size at each iteration. It is clarified 

that greatly improved the paper. 
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