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ABSTRACT 

Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and 
strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeycomb core is used in 
applications requiring sandwich construction with fiber-reinforced composite facesheets. However, the use of a fiber- 
reinforced composite core offers the potential for even lower weight, increased stiffness and strength, low thermal dis- 
tortion compatible with that of the facesheets, the absence of galvanic corrosion and the ability to readily modify the 
core properties to suit specialized needs. Furthermore, the material of the core itself will exhibit anisotropic material 
properties in this case. In order to design, analyze and optimize these structures, knowledge of the effective mechanical 
properties of the core is essential. In this paper, the effective three-dimensional mechanical properties of a composite 
hexagonal cell core are determined using a numerical method based on a finite element analysis of a representative unit 
cell. In particular, the geometry of the simplest repeating unit of the core as well as the appropriate loading and bound- 
ary conditions that must be applied is presented. 
 
Keywords: Lightweight Structures; Composite Mirrors; Sandwich Construction; Hexagonal Cell Core; Effective Core 

Properties 

1. Introduction 

Sandwich structures can be used advantageously where 
low weight and high stiffness and strength are required, 
such as the traditional case in aerospace applications. 
Composite materials, such as carbon fiber reinforced 
plastics (CFRP), are well suited for sandwich construc- 
tion methods due to their low weight, high stiffness, high 
strength, dimensional stability, and ease of manufacture. 
For example, complex structural designs can be fabri- 
cated in CFRP directly and do not need massive material 
removal to achieve the desired shape, which would be 
the case with traditional materials such as aluminum. A 
sandwich structure consisting of two face-sheets (skins) 
bonded to a framework of ribs between them is much 
lighter than a solid sheet of the same material but retains 
most of the stiffness in bending. The stiffness against 
bending out of plane is a strong function of the facesheet 
planar stiffness and the distance between the two face- 
sheets (e.g., the moment of inertia), providing the core 
carries the entire shear load. Sandwich construction is 
very common in a wide variety of applications, including 

aircraft components, space structures, and other weight 
sensitive applications. More recently, other non-tradi- 
tional applications have emerged, such as in land and sea 
transportation [1] and in the construction of optical tele- 
scope composite mirrors [2,3]. The latter requires very 
tight tolerances of dimensional stability and low weight, 
so a core made of CFRP material that is very stiff and at 
the same time has thermal expansion compatible with 
that of the facesheets can be used advantageously. In or- 
der to facilitate the analysis and design of these structures, 
the core can be represented as a homogeneous layer with 
equivalent mechanical properties. 

The effective properties of the core can be found ana- 
lytically, numerically or experimentally [4]. Existing an- 
alytical methods to find the equivalent homogeneous 
properties of the core are based on isotropic material 
properties (e.g. aluminum) and use a variety of simpli- 
fying assumptions. Notably, Kelsey et al. [5] used the 
unit displacement and unit load methods in conjunction 
with simplifying assumptions to derive simple expres- 
sions for the upper and lower limits of the shear moduli 
of honeycomb sandwich cores. Hoffman [6] used an en- 
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ergy method to derive an expression for the in-plane 
Poisson ratio. Zhang and Ashby [7] adapted the analysis 
of Gibson and Ashby [8] for honeycombs with a pair of 
doubled walls in each hexagonal cell to derive effective 
out-of-plane properties. Later, Masters and Evans [9] 
combined the three mechanisms of flexing, hinging and 
stretching to derive in-plane effective properties of the 
core for the tensile and shear moduli, and Poisson’s ratio. 
Grediac [10] used finite element analyses and the upper 
and lower bounds to determine a least squares approxi- 
mation for the transverse shear moduli. However, due to 
the complexities involved, analytical solutions for a core 
with walls made of CFRP materials, which are anisot- 
ropic in nature, are not currently available. 

In a previous paper, Penado et al. [2] presented a nu- 
merical method to find the mechanical properties of a 
triangular isogrid core with composite (anisotropic) walls. 
In the present paper, a practical method is presented to 
determine the effective elastic properties of a hexagonal 
cell core from a finite element analysis of the simplest 
repeating unit of the core, including the proper boundary 
conditions that must be used in the model. In applications 
that require structural stability, such as composite mirrors, 
hexagonal cells offer the advantage of higher out-of- 
plane shear stiffness over triangular cells of the same 
density. 

2. Unit Cell Method 

A hexagonal cell core exhibits a regular, periodic pattern. 
Although a full core can be difficult or impractical to 
model due to its complexity, a significant amount of 
simplification can be achieved by considering only the 
representative structural unit, or unit cell, as shown in 
Figure 1. However, this unit cell is not the simplest re- 
peating unit that must be used in the finite element model, 
as shown later. By proper selection of boundary condi- 
tions and loading, the properties obtained by using the 
unit cell equal those of the full core. It should be noted 
that, due to the expansion process used in the manufac- 
ture of hexagonal-cell cores, the thickness of the hori- 
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Figure 1. (a) Plan view of full hexagonal cell core; (b) Unit 
cell. 

zontal cell wall is usually twice the thickness of the in- 
clined cell walls, and this is the case considered herein 
(see Figure 1). 

The effective stiffnesses of the core are determined by 
finding the force necessary to produce an unit displace- 
ment in a given direction, determining the resulting stress 
and strain, and then calculating the corresponding engi- 
neering constants. This process can be used to find the 
nine effective engineering constants, Ex, Ey, Ez, Gxy, Gxz, 
Gyz, xy, xz, and yz. In equation form, 
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where i, j = x, y or z directions; Ei=extension modulus in 
i-direction; ij = Poisson’s ratio; Gij = shear modulus in 
i-j plane; i = normal stress in i-direction; i = normal 
strain in i-direction; ij = shear stress in i-j plane; ij = 
shear strain in i-j plane; Ai, Aj = projected area of core on 
a plane perpendicular to i-, j-direction; Li, Lj = length of 
core in i-, j-direction; Fi, Fj = force needed to produce a 
unit displacement ui, uj; ui, uj = unit displacement in i-, 
j-direction = 1; and uij = resulting displacement in j-di- 
rection when a unit displacement is applied in i-direction. 
For example, 
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The application of the appropriate boundary conditions 
and unit displacements to the unit cell is discussed in the 
next section. It should be noted that, as part of the verifi- 
cation process involving symmetry conditions, the fol- 
lowing six additional effective engineering constants 
were also calculated: Gyx, Gzx, Gzy, yx, zx, and zy. 

3. Finite Element Model and Boundary  
Conditions 

3.1. Finite Element Model of Unit Cell 

Closed form solutions for the effective properties of a 
core with hexagonal cells can be found in the literature 
only for the special case of isotropic walls, such as those 
made of aluminum [7,9,11]. Cell walls made of compos- 
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ite materials, such as carbon fiber reinforced plastics, 
present additional complications due to the inherent het- 
erogeneous and anisotropic nature of these materials. In 
fact, even if the material is layed-up in a quasi-isotropic 
configuration (that is, exhibiting isotropic behavior in the 
plane of the material), the in-plane and flexural stiff- 
nesses will have different values due to the layered na- 
ture of the composite laminate [12]. Thus, the flexural 
stiffnesses will depend on the lay-up sequence, while the 
in-plane stiffnesses will not. Furthermore, since the de- 
formation mechanisms in honeycomb cells can include 
flexure, stretching and hinging [9], the results for iso- 
tropic core materials may not apply when composite ma- 
terials are used. 

The finite element method provides an effective way 
to deal with the anisotropic and heterogeneous behavior 
of composite cell walls. However, and although the finite 
element model of the unit cell is simple, a difficulty 
normally found in this process is the determination of the 
appropriate boundary conditions that must be applied to 
the model in order to replicate the behavior of the overall 
core. The determination of these boundary conditions is 
dependent upon the overall behavior expected. For the 
present case of hexagonal cells, these boundary condi- 
tions were determined by careful study and evaluation of 
the expected loading, deformation and symmetry condi- 
tions of the 1/8 segment of the unit cell shown in Figure 
2(b), and are summarized in Table 1. Note that, as 
shown in Figures 2(a) and (b), only 1/8 of a unit cell is 

needed in the finite element model due to the symmetry 
of the unit cell in the x, y and z directions. Therefore, a 
simple finite element mesh consisting of laminated com- 
posite shell elements, as shown in Figure 3(b), is all that 
is needed to obtain the same results as if the full core 
(containing a repeating pattern of unit cells) were mod- 
eled. Figure 3(b) also shows the labeling of the edges 
and surfaces used in the definition of the boundary con- 
ditions in Table 1. The boundary conditions presented in 
Table 1 were verified as discussed next. 

3.2. Verification of the Boundary Conditions of  
the Model 

In order to verify the finite element model and, in par- 
ticular, the validity of the boundary conditions used, re- 
sults for an aluminum core obtained by the present 
method were compared with theoretical and experimental 
results from the literature for the special case of isotropic 
cell walls (aluminum). The comparison of results is given 
in Table 2. The core properties used were w = 6.35 mm, 
h = 20 mm, t = 0.0635 mm, E = 68.9 GPa,  = 0.33 and 
m = density of the raw material = 2704 kg/m3. For the 
finite element results, two conditions are possible at the 
interface between the core and the facesheet: wall free 
and wall fixed. The wall free condition corresponds to 
the case where the facesheet has no restraining effect on 
the core and is the case shown in Table 1. On the other 
hand, for the wall fixed condition, the facesheet com- 
pletely prevents the core from rotation at the interface. 

 
Table 1. Boundary conditions needed for the proper modeling a 1/8 segment of a unit cell. Edges and surfaces are defined in 
Figure 3b. 

Boundary conditions† Location 
(see Figure 

3(b)) Ex, xy and xz Ey, yx and yz Ez, zx and zy Gxy Gyx Gxz Gzx Gyz Gzy 

E1 SZ SZ SZ SZ SZ AZ AZ AZ AZ 

E2 SZ SZ SZ SZ SZ AZ AZ AZ AZ 

E3 SZ SZ SZ SZ SZ AZ AZ AZ AZ 

E4 
uz uniform  
(CPDOF) 

uz uniform 
(CPDOF) 

uz = 1 free free ux = uy = 0
ux = 1 

uy = uz = 0 
ux = uy = 0

uy = 1 
ux = uz = 0

E5 
uz uniform  
(CPDOF) 

uz uniform 
(CPDOF) 

uz = 1 free free ux = uy = 0
ux=1 

uy = uz = 0 
ux = uy = 0

uy = 1 
ux = uz = 0

E6 
uz uniform  
(CPDOF) 

uz uniform 
(CPDOF) 

uz = 1 free free ux = uy = 0
ux = 1 

uy = uz = 0 
ux = uy = 0

uy = 1 
ux = uz = 0

E7 ux = 1 
ux uniform 
(CPDOF) 

ux uniform (CPDOF) uy = 1 AX 
uz = 1 

ux = uy = 0
AX SX SX 

E8 SX SX SX AX AX AX AX SX SX 

S1 SY SY SY AY AY SY SY AY AY 

S2 
uy uniform (CPDOF)

AR = 0 
uy = −1 
AR = 0 

uy uniform (CPDOF)
AR = 0 

AY 
ux = −1 

uy = uz = 0
SY SY 

uz = −1 
ux = uy = 0

AY 

†SX, SY, SZ = symmetry conditions with respect to a plane perpendicular to the X, Y, Z axis; AX, AY, AZ = anti-symmetry conditions with respect to a plane 
perpendicular to the X, Y, Z axis; ux, uy, uz = displacement in the x, y, z direction; CPDOF = coupled degrees of freedom; AR = all rotations. 
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Table 2. Comparison of results for aluminum core for verification of the boundary conditions in the finite element model. 

Present results Literature 

4-noded elements 8-noded elements Property 

Wall free Wall fixed Wall free Wall fixed 

Theoretical 
(wall free) 

Experimental 

Ex (GPa) 0.000924 0.00399 0.000924 0.00279 0.000827 [9] - 

Ey (GPa) 0.000924 0.00399 0.000924 0.00279 0.000827 [9] - 

Ez (GPa) 1.84 1.84 1.84 1.84 1.84 [7] 
1.0 (Hexcel) [13] 
1.03 (ASTM) [13] 

1.89 (Dynamic method) [13] 

xy 0.999 0.996 0.999 0.997 0.999 [9] - 

yx 0.999 0.994 0.999 0.996 0.999 [9] - 

xz 0.000165 0.000716 0.000166 0.000500 0 [7] - 

zx 0.329 0.330 0.330 0.330 0.33 [7] - 

yz 0.000166 0.000715 0.000166 0.000499 0 [7] - 

zy 0.331 0.330 0.330 0.330 0.33 [7] - 

Gxy (GPa) 0.000347 0.00256 0.000346 0.00168 0.000207 [9] - 

Gyx (GPa) 0.000448 0.00196 0.000454 0.00137 - - 

Gxz (GPa) 0.389 0.389 0.389 0.389 0.395 [10] 
0.44 (Hexcel) [13] 
0.465 (ASTM) [13] 

0.369 (Dynamic method) [13] 

Gzx (GPa) 0.395 0.395 0.395 0.395 - - 

Gyz (GPa) 0.259 0.259 0.259 0.259 0.259 [10] 
0.22 (Hexcel) [13] 
0.251 (ASTM) [13] 

0.217 (Dynamic method) [13] 

Gzy (GPa) 0.259 0.259 0.259 0.259 - - 
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Figure 2. (a) 3D view of unit cell; (b) 1/8 segment used in finite element analysis due to symmetry conditions of the unit cell. 
 
The actual interface conditions are in between these two 
extreme cases due to the elasticity of the bonded inter- 
face between the facesheet and core. Note that the 
boundary conditions for the wall fixed case can be ob- 
tained from those given in Table 1 by imposing the addi- 
tional constraint that AR = all rotations = 0 at edges E4, 
E5 and E6. In addition, the effect of the order of the ele- 
ments was investigated by considering 4-noded and 8- 
noded shell elements. The results were virtually identical 
for 4- and 8-noded elements for wall free conditions and 
a small difference in the wall fixed case for the relatively 
small in-plane properties (Ex, Ey, Gxy and Gyx) and the 

near zero Poisson’s ratios (xz and yz). Hence, only 4- 
noded elements are used hereafter. It can be seen in Ta- 
ble 2 that there is good agreement between the literature 
results and the present finite element solution. The dif- 
ference is most likely due to the approximate nature of 
the theoretical results, which are based on mechanics of 
materials approximations. The few experimental results 
available are reasonably close to the present results, es- 
pecially when one considers the difficulties inherent in 
measuring the elastic properties of the core [13]. It is 
interesting to note that virtually no difference in values is 
observed between the wall free and wall fixed conditions  
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Figure 3. (a) 1/8 segment used in finite element analysis; (b) 
Typical finite element mesh used showing the labeling of 
edges (E) and surfaces (S). 
 
for the properties not small or near zero (Ez, xy, yx, zx, 
zy, Gxz, Gzx, Gyz and Gzy). However, this is not necessar- 
ily the case with other cell dimensions, wall thicknesses, 
and when composite cells are considered, as seen in Ta- 
bles 4 and 6, especially for the Poisson’s ratios. However, 
the difference is small and either the wall free or wall 
fixed boundary conditions can be used to approximate 
the effective elastic properties of the core. 

An additional check is provided by noting that the 
symmetry of the stiffness constants requires that the fol- 
lowing relations be satisfied [12]: 

, ,xy xy xz zx yz zyG G G G G G              (7) 

, ,y z z
yx xy zx xz zy yz

x x y

E E E

E E E
               (8) 

In order to perform this check, the properties Gyz, Gzx, 
Gzy, yx, zx and zy were additionally calculated. The ap- 
propriate boundary conditions for these cases are also 
given in Table 1. It can be seen that the results in Table 
2 either equally or very nearly satisfy Equations (7), (8), 
providing an additional check on the results. The only 
case where there is a small discrepancy is in the in-plane 
shear modulus, Gxy. This discrepancy may be explained 
by the relatively small value of Gxy with respect to the 
out-of-plane shear moduli, Gxz and Gyz, which are rough- 
ly 2 - 3 orders of magnitude smaller. It should be noted 
that Chamis [14] noticed a similar small discrepancy 
between Gxy and Gyx using a completely different ap- 
proach based on a three dimensional detailed finite ele- 
ment model of the honeycomb that included multiple 
cells. His results were based on “wall free” conditions for 
the cells. Chamis also observed a much smaller discrep- 
ancy between Gxz and Gzx and exact equality between Gyz 
and Gzy, all consistent with the present results. 

4. Results for Anisotropic Cells and  
Discussion 

The 1/8 segment of a unit cell shown in Figure 3(a) was 
modeled using version 2.95 of the finite element code 
COSMOS/M [15]. This finite element code includes, in 
its library, a layered composite element with a capacity 
of up to fifty layers, and is suitable for the analysis of 
structures made of composite materials. The finite ele- 
ment mesh used herein is shown in Figure 3(b) and con- 
sisted of 1,701 nodes and 1,600 four-noded composite 
shell elements. The boundary conditions used are those 
shown in Table 1. A cell size of 25.4 mm and three la- 
yups ([45/−45]s, [0/±60]s, and [0 ± 53.5/90]s) were con- 
sidered. All of the layups used result in a relatively low 
coefficient of thermal expansion in the walls of the core 
and were chosen because they provide different condi- 
tions of practical importance. The [45/-45]s laminate has 
the smallest thickness and highest in-plane shear, but its 
other elastic properties are relatively low. The [0/±60]s 
laminate is a quasi-isotropic laminate with intermediate 
thickness. The [0/±53.5/90]s laminate has near zero coef- 
ficient of thermal expansion in the x-direction (see foot- 
note under Table 3), but has the highest thickness. In 
each case, a larger thickness means higher density. For 
the various cell sizes, the cell height used was the same 
as the cell size, h = a. The same number of elements and 
nodes were used in each case, although the element size 
was scaled up or down depending on the cell size. The 
ply (lamina) material used consisted of a high modulus 
pitch fiber with a cyanate ester matrix, and has the prop- 
erties given in Table 5 [16]. As a result of its high stiff- 
ness and dimensional stability due to its hygrophobic 
nature, this material system is well suited for use in 
composite mirror applications. Furthermore, the thermoe- 
lastic laminate properties for each laminate, calculated 
from laminated plate theory [12], are given in Table 3 
along with the corresponding properties of aluminum for 
comparison. The equivalent stiffnesses for the core re- 
sulting from the analysis are given in Tables 4 and 6, 
respectively, for the cases of free and fixed boundary 
conditions at edges E4, E5 and E6 (Figure 3b). The re- 
sults for the composite (anisotropic) core are compared 
with those of aluminum core of the same density. For a 
hexagonal core, the dimensionless relative density, de- 
fined as the ratio of the core density  to the density of 
the raw material m, can be expressed in terms of the wall 
thickness and cell size as: 

 
   

wall wall wall

cell cell cell

2 2 8

3 33 2 2 2 2

m

m m

m V A
c

m V A

a a a t t

aa a a a


 

   

 
  

 

     (9) 

where the cell used corresponds to the 1/8 segment in  
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Table 3. In-plane thermoelastic properties for the various laminate configurations used in the cell wall. 

Composite layup 
Property* 

Aluminum 
(Isotropic) [45/−45]s (Angle-ply) [0/60]s (Quasi-isotropic) [0/53.5/90]s (0-CTE) 

Material density, m (kg/m3) 2704 1710 1710 1710 

Ex, in-plane (GPa) 68.9 20.7 99.3 84.8 

Ex, flexural (GPa) 68.9 19.1 199.3 167.5 

Ey, in-plane (GPa) 68.9 20.7 99.3 122.0 

Ey, flexural (GPa) 68.9 19.1 31.4 45.8 

xy 0.33 0.856 0.307 0.233 

Gxy (GPa) 25.9 70.3 37.9 35.2 

x (/˚C) 23.0 0.409 0.409 0.00374 

y (/˚C) 23.0 0.409 0.409 0.713 

*The x-direction corresponds to the direction perpendicular to the z-axis in the plane of the cell wall. 
 

Table 4. Equivalent stiffnesses of aluminum and composite cores of equal densities with free cell wall conditions. 

Equivalent stiffness from finite element model, free wall, 4-noded elements 
Property 

Aluminum cell, w = 25.4 mm Composite cell, w = 25.4 mm Ratio Composite/Aluminum 

Layup - - - [45/−45]s [0/60]s [0/53.5/90]s [45/−45]s [0/60]s [0/53.5/90]s

Wall thickness, t (mm) 0.353 0.531 0.709 0.559 0.838 1.12 - - - 

Core density,  (kg/m3) 100.3 150.7 200.9 100.3 150.7 200.9 1 1 1 

Ex (GPa) 0.00248 0.00834 0.0198 0.00685 0.0772 0.150 2.76 9.26 7.56 

Ey (GPa) 0.00248 0.00834 0.0197 0.00684 0.0772 0.148 2.76 9.26 7.52 

Ez (GPa) 2.56 3.84 5.12 1.21 8.76 14.3 0.473 2.28 2.80 

Gxy (GPa) 0.000931 0.00313 0.00738 0.00243 0.0235 0.0447 2.61 7.51 6.07 

Gyx (GPa) 0.00122 0.00411 0.00972 0.00459 0.0431 0.0807 3.76 10.5 8.30 

Gxz (GPa) 0.542 0.814 1.08 2.32 1.88 2.32 4.27 2.31 2.14 

Gzx (GPa) 0.569 0.855 1.14 2.35 1.97 2.45 4.13 2.31 2.15 

Gyz (GPa) 0.361 0.542 0.724 1.54 1.25 1.54 4.27 2.30 2.13 

Gzy (GPa) 0.361 0.542 0.724 1.54 1.25 1.54 4.27 2.30 2.13 

xy 0.998 0.996 0.993 0.989 0.984 0.973 0.991 0.988 0.980 

yx 0.998 0.994 0.990 0.988 0.977 0.961 0.990 0.983 0.971 

xz 0.000319 0.000717 0.00127 0.00483 0.00273 0.00350 15.1 3.81 2.76 

zx 0.329 0.329 0.330 0.854 0.307 0.335 2.60 0.933 1.02 

yz 0.000320 0.000719 0.00127 0.00484 0.00271 0.00347 15.1 3.77 2.73 

zy 0.331 0.331 0.330 0.858 0.308 0.336 2.59 0.931 1.02 

 
Table 5. Fiber-reinforced composite lamina material properties used in the analysis. 

E1 (GPa) E2 (GPa) 12 G12 (GPa) 1 (/˚C) 2 (/˚C) Density, m (kg/m3) Ply thickness (mm)

279 3.93 0.324 5.56 1.31 48.2 1710 0.140 
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Table 6. Equivalent stiffnesses of aluminum and composite cores of equal densities with fixed cell wall conditions. 

Equivalent stiffness from finite element model, fixed wall, 4-noded elements 
Property 

Aluminum cell, w = 25.4 mm Composite cell, w = 25.4 mm Ratio Composite/Aluminum 

Layup - - - [45/−45]s [0/±60]s [0/±53.5/90]s [45/−45]s [0/±60]s [0/±53.5/90]s

Wall thickness, t (mm) 0.353 0.531 0.709 0.559 0.838 1.12 - - - 

Core density,  (kg/m3) 100.3 150.7 200.9 100.3 150.7 200.9 1 1 1 

Ex (GPa) 0.0596 0.186 0.403 0.0275 0.101 0.199 0.462 0.544 0.493 

Ey (GPa) 0.0585 0.179 0.379 0.0274 0.100 0.195 0.468 0.558 0.515 

Ez (GPa) 2.56 3.84 5.12 1.21 8.76 14.3 0.473 2.28 2.80 

Gxy (GPa) 0.0412 0.125 0.265 0.0137 0.0389 0.0724 0.333 0.312 0.273 

Gyx (GPa) 0.0290 0.0896 0.194 0.0182 0.0599 0.111 0.629 0.668 0.573 

Gxz (GPa) 0.542 0.814 1.08 2.32 1.88 2.32 4.27 2.31 2.14 

Gzx (GPa) 0.570 0.855 1.14 2.35 1.98 2.46 4.12 2.31 2.15 

Gyz (GPa) 0.361 0.542 0.724 1.54 1.25 1.54 4.27 2.30 2.13 

Gzy (GPa) 0.363 0.547 0.731 1.56 1.28 1.61 4.30 2.35 2.20 

xy 0.958 0.913 0.859 0.956 0.979 0.964 0.998 1.07 1.12 

yx 0.941 0.879 0.808 0.951 0.970 0.949 1.01 1.10 1.17 

xz 0.00767 0.0160 0.0259 0.0194 0.00356 0.00465 2.53 0.223 0.180 

zx 0.330 0.330 0.330 0.856 0.307 0.335 2.59 0.930 1.02 

yz 0.00753 0.0154 0.0244 0.0193 0.00353 0.00457 2.56 0.229 0.187 

zy 0.330 0.330 0.330 0.856 0.307 0.335 2.59 0.930 1.02 

 
Figure 2b, V = volume and A = cross-sectional area. 

The above equation indicates that in order to achieve 
the same density for aluminum and composite cores, the 
thickness of the aluminum core wall must be made small- 
er by the ratio of raw material densities as follows: 

 
   composite

Al composite composite

Al

0.633
m

m

t t t



      (10) 

Tables 4 and 6 also show the ratio of the composite 
and aluminum cell properties. A ratio higher than one 
indicates that the corresponding property of the compos- 
ite cell is larger than that of the aluminum. It can be seen 
that in most cases the composite has higher properties, 
especially for the transverse shear moduli (Gxz and Gyz), 
which are always higher for the composite core. These 
transverse moduli are essential in the design of sandwich 
panels since the core must be stiff enough in shear to 
ensure that the facesheets do not slide over each other 
when bending is present. In addition, no significant dif- 
ference is seen between the “free wall” and “fixed wall” 
results for the properties not small or near zero (Ez, xy, 
yx, zx, zy, Gxz, Gzx, Gyz and Gzy) in Tables 4 and 6. 

5. Summary and Conclusions 

A simplified finite element procedure to determine the 
equivalent engineering elastic moduli of a hexagonal cell 
core has been presented, including the appropriate bound- 
ary conditions that must be applied to a 1/8 segment of a 
unit cell in order to replicate the behavior of the overall 
core. Using this method, values for the effective proper- 
ties of hexagonal cell cores made of composite materials 
of various layups were presented. It was shown that the 
present method provides an accurate and practical way to 
incorporate the anisotropic and heterogeneous behavior 
of composite materials in the analysis of core properties. 
Furthermore, accurate values for the effective core prop- 
erties are particularly important in the design of sand- 
wich composite structures such as optical composite mir- 
rors. Results for composite core showed that the trans- 
verse shear moduli are always higher than those of alu- 
minum for the same core density. Additionally, if sand- 
wich panels incorporate both composite facesheets and 
core, instead of aluminum core, then lower weights, in- 
creased stiffness, lower thermal distortion compatible 
with that of the facesheets, the absence of galvanic cor- 
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rosion and the ability to readily modify the core proper- 
ties to suit specialized needs can be achieved. 
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