
Advances in Pure Mathematics, 2013, 3, 586-589 
http://dx.doi.org/10.4236/apm.2013.36075 Published Online September 2013 (http://www.scirp.org/journal/apm) 

Estimates for Holomorphic Functions  
with Values in  0,1   

P. V. Dovbush 
Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Kishinev, Republic of Moldova 

Email: peter.dovbush@gmail.com 
 

Received June 29, 2013; revised July 28, 2013, accepted August 24, 2013 
 

Copyright © 2013 P. V. Dovbush. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract 

Extension of classical Mandelbrojt’s criterion for normality to several complex variables is given. Some inequalities for 
holomorphic functions which omit values 0 and 1 are obtained. 
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1. Introduction 

In 1929, Mandelbrojt [1] has asserted his criterion for 
normality of a family of holomorphic zero-free functions 
of one complex variables. 

In [2], the author has proved a generalization of Man- 
delbrojt’s criterion to several complex variables. In order 
to state this criterion precisely, we introduce some nota- 
tions. 
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and 1 is normal, so by the Theorem 
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In the proof of this proposition, we combine the result 
of Lai [3] with the definition of the Kobayashi metric and 
obtain a very elementary proof of Proposition 3 in [4]. 

2. The Proof of Mandelbrojt’s Criterion 

Proof of Theorem 1.  Fix a point  in   and con- 0z
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sider a ball  0 ,B z r  
L f B

.  Suppose that   is normal  

in  but the set   for some    0 0, ,z r  , f  ,

0 ,r r  is unbounded. Then there exists a sequence  

 jf    suchthat 

  0 0 , ,L f B z r



 for all .j j            (3) 

By hypothesis  is normal, and therefore, the fol-
lowing two cases exhaust all the possibilities for se- 
quence   :jf  

1) The sequence  jf  has a subsequence  kj
f   

which converges uniformly on  0 0,B z r  to a holomor- 

phic function ;f  

2) The sequence  jf  has a subsequence  kj
f  

which converges uniformly on  0 0,B z r  to Since  
is a family of zero-free holomorphic functions in a do- 
main  by Hurwit’s theorem 



 f  is either nowhere 
zero or identically equal to zero. 

Therefore the following three cases exhaust all the 
possibilities for sequence   :jf  

a) The sequence  jf  has a subsequence  kj
f  

which converges uniformly on  0 0,B z r  to the holo- 
morphic function  0;f 
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phic function f  which is zero-free on  0 0,B z r ; 
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which converges uniformly on  0 0,B z r  to  .



Since it follows readily from (3) that  

  0 0 , , jB z r  for all  L f j             (4) 

In case a) (respectively in case c)) we have 

  1 2
kj

f z   (respectively   2
kj

f z   for all  

 0 0,z B z r  and all  sufficiently large. Hence  k 
 ln

kj
f z





 is a negative (respectively positive) pluri- 
harmonic function in  Pluriharmonic functions 
form a subclass of the class of harmonic functions in 

 (obviously proper for ). So by Harnack’s 
inequality there exists some constant  

 0B z

 

, r

 0 ,B z r 1n 

  0 0 0, , , ,C C B z r B z r   1, ,C   

that 

 
 

 0 0,B
ln

 for all  and ,
ln

k

k

j

j

f z
C z w z r

f w
 



 

and hence   0 0, ,
kj

m f B z r C  for all  suffi- 
ciently large. 

k 

In case b), we have    lim
kjk

f z f z






 for all 

 0 , .z B z r  It follows 

 
 

 
 

 0 0lim  uniformly for  and ,k

k

j

k
j

f z f z
z w B z r

f wf w
   

The function    f z f w  is holomorphic on 

   0 0 0 0,B z r B z r , ,  it follows that   0 0, ,m f B z r  is 

bounded. 
Since   0 0, ,

kj
L f B z r

 
 is the minimum of  

 0 0, ,
kj

m f B z r  and    0 0, ,
kj

m f B z r

the set of quantities   0 0, , ,L f B z r k ,
kj

 is bounded, 
which is a contradiction to (4). 
Fix a point  in 0z   and define the families  
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To prove that the family   0, 1f f z    is  

normal, it is sufficient to show that each sequence 
 jf   contains a subsequence converging locally 
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 0 0,B z r  by Montel’s theorem and hence we are 
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analytic and it follows that    1
kj

f z h z  uniformly 
on compact subsets of .  0 0,B z r

It follows that  and  are normal at 0  so that 
the union  is normal in 

 z
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u
y  play symmetric roles, it is evident that the first ine- 
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For obtaining inequalities (2), let us notice that there 
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