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ABSTRACT 

This research studies short-term electricity load prediction with a large-scalelinear programming support vector regres- 
sion (LP-SVR) model. The LP-SVR is compared with other three non-linear regression models: Collobert’s SVR, Feed- 
Forward Neural Networks (FFNN), and Bagged Regression Trees (BRT). The four models are trained to predict hourly 
day-ahead loads given temperature predictions, holiday information and historical loads. The models are trained on- 
hourly data from the New England Power Pool (NEPOOL) region from 2004 to 2007 and tested on out-of-sample data 
from 2008. Experimental results indicate that the proposed LP-SVR method gives the smallest error when compared 
against the other approaches. The LP-SVR shows a mean absolute percent error of 1.58% while the FFNN approach has 
a 1.61%. Similarly, the FFNN method shows a 330 MWh (Megawatts-hour) mean absolute error, whereas the LP-SVR 
approach gives a 238 MWh mean absolute error. This is a significant difference in terms of the extra power that would 
need to be produced if FFNN was used. The proposed LP-SVR model can be utilized for predicting power loads to a 
very low error, and it is comparable to FFNN and over-performs other state of the art methods such as: Bagged Regres- 
sion Trees, and Large-Scale SVRs. 
 
Keywords: Power Load Prediction; Linear Programming Support Vector Regression; Neural Networks for Regression; 

Bagged Regression Trees 

1. Introduction 

Accurate load predictions are critical for short term op- 
erations and long term utilities planning. The load pre- 
diction impacts a number of decisions (e.g., which gen- 
erators to commit for a given period of time) and broadly 
affects wholesale electricity market prices [1]. Load pre- 
diction algorithms also feature prominently in reduced- 
form hybrid models for electricity price, which are some 
of the most accurate models for simulating markets and 
modeling energy derivatives [2]. 

Traditionally, utilities and marketers have used com- 
mercial software packages for performing load predic- 
tions. The main disadvantage of these is that they offer 
no transparency into how the predicted load is calculated. 
They also ignore important information, e.g., regional 
loads and weather patterns. Therefore, they do not pro- 

duce an accurate prediction. 
The general problem of electricity load forecasting has 

been approached with a combination of support vector 
machines and simulated annealing with satisfactory re- 
sults [3] when compared against neural network ap- 
proaches for regression; however, the problem was not 
addressed for the particular case of short-term electricity 
load forecasting. The work by Mohandes [4] represented 
significant advances in this field by showing that support 
vector machines over-perform typical statistical ap- 
proaches and typical neural network algorithms, particu- 
larly, the author demonstrate that as the training data 
increases, the better the performance is for support vec- 
tor-based classifiers; in spite of this findings, no large- 
scale approaches were tested. Recently, Jain et al. [5] 
studied the case of clustering the training data with re- 
spect to its average pattern and then used support vector 
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machines to forecast power load; the paper reports sam- 
pling two years of data to train the support vector ma- 
chines with outstanding results, nevertheless, no large- 
scale methodologies were used. 

To the best of our knowledge, no efforts have been 
reported to address the problem of short-term electricity 
load forecasting using a large-scale approach to support 
vector machines. Our motivation to use a large-scale ap- 
proach is that such an approach will permit the support 
vector machine to use a much larger set to define the 
support vectors that will provide a superior regression 
performance. Furthermore, we will take advantage of the 
computational efficiency of a linear programming ma- 
thematical formulation for a support vector regression 
problem. This research considers several variables to 
build a prediction model and compares results among a 
Linear Programming Support Vector Regression (LP- 
SVR) approach, a Feed Forward Neural Network (FFNN), 
and Bagged Regression Trees (BRT). This paper shows 
that the proposed LP-SVR model provides better fore- 
casts than FFNN and BRT approaches. 

2. Dataset 

The dataset used for this electricity load prediction prob- 
lem includes historical hourly temperatures and system 
loads from the New England Pool region. The original 
dataset was obtained from the New England ISO. At the 
time of writing this paper, the direct link to Zonal load 
data was the one shown in this reference [6]. Table 1 shows 
the variables included for predicting the electricity load. 

These variables are called features. The features to 
consider are the bulb and dew temperature, the hour of 
the given day, the day of the week, and whether it is a 
holiday or weekend. Also, the features include the aver- 
age load of the previous 24 hours, the lagged load of the 
previous 24 hours, and the previous week lagged load. 

The training set   1
, trN

i i i
d


 x  consists of input fea- 

ture vectors 8
i x   (consistent with the variables 

listed in Table 1) and targets id  corresponding to the 
measured electricity load. The total number of training 
samples is 35,064trN  . A testing set   1

, teN

i i i
d


 x  

was also used, consisting of 8784teN   samples. 
Each feature vector ix  corresponds to one hour reading, 

i.e., one complete day would be equivalent to 24 sequential 
feature vectors  1 2 24, , ,i i i  x x x . Consequently, the 
training set consists of 1461 days, or four years of data. The 
testing set consists of one leap year of data or 366 days. 

3. Training the Regression Models 

The regression models will be constructed using the 
training set  . The training procedure involves a train- 
ing set partition into a new training set and a validation 
set  , which is used to auto-adjust model parameters  

Table 1. Variables used for prediction. 

Number Description Domain 

1 Dry bulb temperature   

2 Dew point temperature   

3 Hour of day   

4 Day of the week   

5 Holiday/weekend flag  0,1  

6 Previous 24-hr average load   

7 24-hr lagged load   

8 168-hr (previous week) lagged load   

 
during the learning process. Once the model is trained 
and internally validated a testing phase follows in order 
to estimate the true performance errors of the models 
with unseen data. The complete regression modeling frame- 
work is shown in Figure 1. 

The actual regression models used in this study are 
briefly introduced in the following sections. 

3.1. Feed-Forward Neural Network 

The first regression model used was based on neural 
networks. In fact, this study uses the Feed-Forward Neu- 
ral Network architecture because they can approximate 
any square-integrable function to any desired degree of 
accuracy provided a training set [7,8]. A simple FFNN 
contains an input layer and an output layer, separated by l 
layers (the set of l layers is known as hidden layer) or 
neuron units. Given an input sample clamped to the input 
layer, the neuron units of the network compute their pa- 
rameters according to the activity of previous layers. This 
research considers the particular neural topology where 
the input layer is fully connected to the first hidden layer, 
which is fully connected to the next layer until the output 
layer.  

Given an input feature vector 4x  , the value of the 
-thj  unit in the -thi  layer is denoted  i

jh x , with 
0i   referring to the input layer, 1i l   referring to 

the output layer. We refer to the size of a layer as 
 ih x . The default activation level is determined by the 

internal bias i
jb  of that unit. The set of weights i

jkW  
between  1i

kh  x  in layer 1i   and unit  1i
jh  x  in 

layer i  determines the activation of unit  i
jh x  as 

follows: 

    sigΦi i
j jh ax x             (1) 

where    1i i i i
j jk k jk

a W h b x x , for all  
 1, ,i l  with  0h x x  and    sigΦ sigm    is  

the sigmoid activation function   1
sigm

1 e a
a 


. Giv- 

en the last hidden layer, the output layer is computed 
similarly by 
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Figure 1. Framework to build regression models for power 
load prediction. Blocks on the left indicate the input vari- 
ables, i.e., attributes used to build the regression models. 
 

   1lo h x x               (2a) 

    1 1
lin

l lh a  x x           (2b) 

where    1 1 1l l l la W h b   x x  and the activation 
function  lin   is of the linear kind which required in 
regression problems (see text books [9] and [10] for a 
detailed development). Thus, when an input sample x  
is presented to the network, the application of 1) at each 
layer will generate a pattern of activity in the different 
layers of the neural network and produce an output with 
2). Then d  is the regression output of the neural net- 
work. 

The FFNN requires a training phase to build the model 
 ,W b . In this training phase, we used the “Levenberg- 
Marquardt” algorithm along with with a back-propaga- 
tion strategy to update the weights W  and biases b . 
As a learning function, we used the well established me- 
thod of gradient descent with momentum weight and bias. 
The FFNN training phase ends when any of the follow- 
ing conditions holds:  
● A number of 100 epochs (i.e. training iterations) is 

reached; 
● The actual mean of absolute error (MAE) is 1 × 10−6; 
● The gradient step size is less than or equal to 1 × 

10−10. 
A well-established technique for preventing over-fit- 

ting in the training was also implemented. This technique 
consists of partitioning the training set into two sets, 
training (80%) and validation (20%), such that when the 
MSE has not been decreased in the past five iterations 
using the internal validation set, the training phase stops 
and rolls back to the model  ,W b  associated with the 
previous minimum MAE. The network has 20 neurons in 
the hidden layer, and, as said before, the network uses the 
mean of absolute error (MAE) metric as the error func- 
tion to minimize during training. 

3.2. Bagged Regression Trees 

Bagging stands for “bootstrap aggregation”, which is a 

type of ensemble learning [11]. The algorithm in general 
works as follows. To bag a regression tree on a training 
set   1

, trN

i i i
d


 x , the algorithm generates several boot- 

strap clones of the training set and grows regression trees 
on these clones. These clones are obtained by randomly 
selecting trN  samples out of trN  with replacement. 
Then, the predicted response of a trained ensemble cor- 
responds to the average predictions of individual trees 
[12]. 

The process of drawing trN  out of trN  samples with 
replacement omits an average of 37% samples for each 
regression tree. These are called “out-of-bag” observa- 
tions. These out-of-bag observations are used as a valida- 
tion set   to estimate the predictive power. The aver- 
age out-of-bag error is computed by averaging the out- 
of-bag predicted responses versus the true responses for 
all samples used for training. This average out-of-bag 
error is an unbiased estimator of the true ensemble error 
and can be used to auto-adapt the learning process [11]. 

3.3. Large-Scale Support Vector Regression 

Included in this study is the large-scale support vector 
regression (LS SVR) training strategy by Collobert, et al. 
[13], considered the most popular LS-SVR training stra- 
tegy. Collobert, et al. algorithm is an adaptation of Joa- 
chims’ SVM method for SVR problems [13]. The au- 
thors reformulate the typical dual SVR problem to have 
the following Quadratic Programming (QP) minimization 
problem: 

     

   
 

T

,

T T

T

1
min ,

2

0

s.t. ,

, 0

for 1, 2, ,

i i

i i

i i

tr

Q

C

i N

 

 

 

  

   

  
 
  


*

* * *

* *

*

*

*

1

1



K

d

 
   

   

 



    (3) 

where K  is a kernel matrix;  ’s are the Lagrange 
multipliers associated with the solution of the problem; 
d  is the vector of desired outputs, i.e., the targets;   
defines the parameter of the loss function, which repre- 
sents the amount of deviation from the exact solution that 
is permitted; C  is the regularization parameter. 

Next, the authors perform the same decomposition pro- 
posed by Osuna, et al. [14], defining the working set   
and the fixed set  , where the size of the working set 
is   with trN . The authors extend Joachims’ 
idea of the steepest descent direction to select the work- 
ing set at each iteration of the SVR dual problem [15].As 
it is known [13], this method also uses a chunking ap- 
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proach, and a shrinking strategy. 

3.4. Linear Programming Support Vector  
Regression 

Finally, this study also includes a linear programming 
(LP) SVR formulation of Rivas et al. [16,17]. The author 
uses the following SVR optimization problem: 

 

   

   

, , , 1

1

1

min 2

,

s.t. ,

, , , , , 0

for 1, 2, ,

N

i i i
b i

N

i i j i
i

j j j

N

i i j i
i

j j j

j j j j

tr

C

k

b b u d

k

b b u d

b b u

i N

  

 



 



  

 

 



 



 

 



 

   

 

 

      

 

      

 












u

x x

x x

 





     (4) 

where  ’s are the variables that account for the devia- 
tions from the actual exact solution to the optimization 
problem, i.e., they are relaxation parameters.  

Since the canonical form of a linear programming 
problem is the following: 

Tmin

s.t.
0

n


  .

z
c z

Az b

z


               (5) 

Therefore Problem (4) was posed as a linear program- 
ming problem by defining the following equalities: 

1 1
,

1 1

   
     

A
K K I I

K K I I
      (6a) 

,
 

   

1

1

d
b

d




              (6b) 

 T
,b b   z u         (6c) 

 T
0 0 2 , 1 1 0c C        (6d) 

where    2 4 2N N A  , 2Nb  , 4 2, N z c  , having 
z  as the vector of variables that contains the unknowns.  

Finally, in order to find the solution to the problem, 
Rivas et al. [16] use a primal-dual interior point meth- 
ods-based solver to find the variables that satisfy the 
KKT conditions. The LP-SVR parameters used are 

0.125  , 0.5C  , and 0.1 ; these have been 
found empirically for both this LP-SVR and that SVR by 
Collobert explained in Section 3.3. 

4. Experimental Results 

4.1. Experiment Design and Procedure 

The experiments consisted of training the four methods 
with a training dataset   1

, trN

i i i
d


 x  as explained in 

Section 2. Then the following six error metrics were 
analyzed using the testing set   1

, teN

i i i
d


 x : Mean 

Absolute Percent Error (MAPE), Mean Absolute Error 
(MAE), Daily Peak MAPE (DPM), Normalized Error 
(NE), Root Mean Squared Error (RMSE), and Normal- 
ized Root Mean Squared Error (NRMSE). 

The mean absolute percent error can be computed with 
the following equation: 

1

1
MAPE 100,

teN
i i

ite i

y d

N y


         (7) 

where iy  is the -thi  observed regression model output 
corresponding to the -thi  input vector ix . The Mean 
Absolute Error is estimated with: 

1

1
MAE .

N

i i
i

y d
N 

            (8) 

The Daily Peak MAPE consists on analyzing the MAPE 
in a daily fashion. That is, within the testing set 

  1
, teN

i i i
d


 x  choose segments corresponding to a com- 

plete day as follows: 

     1 1 2 2 24 24, , , , , ,i i i i i id d d     x x x  

and observe the predicted daily output  
 1 2 24, , ,i i iy y y    then estimate the peak MAPE of 
that day. Formally, the DPM can be defined as follows. 
Let   denote the number of days available in the test- 
ing set. Let   be the set of sample indices correspond- 
ing to the different number of days: 

 1 2, , , a      

where a  denotes the set of indices corresponding to 
samples of -tha  day. 

Then the Daily Peak MAPE is obtained as follows: 

1

1
DPM arg max 100 .k k

k
k

a
i i

ik i

y d

a y

 

 

  
   
    

  




   (9) 

The following equation is used to compute Normalized 
Error: 

2

2

NE ,i i

i

y d

y


               (10) 

while the Root Mean Squared Error and Normalized 
Root Mean Squared Error are computed as follows: 

 2

1

1
RMSE ,

N

i i
i

y d
N 

           (11) 

 2

1

1 1
NRMSE

N

i i
i

y d
N 

          (12) 
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where σ is the standard deviation of y. 

4.2. Quantitative Results 

Table 2 shows quantitative prediction errors using the 
metrics explained above: MAPE, MAE, DPM, NE, 
RMSE, and NRMSE. According to results in Table 2, 

the proposed LP-SVR model performs with lower error 
than BRT, FFNN, and LS SVM. This result is consistent 
for all the metrics. However, very small differences can 
be observed between the performance of FFNN and 
LP-SVR. This can be confirmed by observation in Fig- 
ures 2 and 3. Figure 2 (top) shows a two-day window of 

 

 

Figure 2. Two-day window of true data compared with predicted for the four different methods (top). Error residuals for the 
four methods (bottom). 
 

 

Figure 3. Christmas two-day window of true data compared with predicted for the four different methods (top). Error re- 
siduals for the four methods (bottom). Note the high prediction error between 14:00-21:00 Hr.  
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Table 2. Variables used for prediction. 

Error Measure Units BRT FFNN SVM-SL  SVR -LP

MAPE % 2.18 1.61 3.52 1.58 

MAE MWh 330.08 243.18 491.38 238.69

DPM % 2.21 1.63 2.62 1.58 

NE - 0.030 0.022 0.040 0.021 

RMSE - 459.115 335.048 608.583 326.468

NRMSE - 0.162 0.118 0.215 0.115 

 
true load compared with the predicted load for the four 
different methods, and also (bottom) shows the error re- 
siduals for the four methods.  

As expected, the results of FFNN and LP-SVR exhibit 
very little difference. In general most methods predict the 
true model to a relative low error. Figure 3 shows a par- 
ticular two-day window for Christmas Eve. As for many 
holidays, Christmas Eve is very difficult to predict due to 
the high variability in electricity consumption. The figure 
demonstrates a considerable high prediction error be- 
tween 14:00-21:00 Hr on 12/24/2008. 

Figure 4 shows the error distribution for the different 
methods. It can be concluded that FFNN and LP-SVR 
have smaller error variances. Similarly, Figure 5 illus- 
trates the absolute error distribution, including the mean 
absolute error for each of the four methods. It can be 
seen that both FFNN and LP-SVR have almost the same 
MAEs. 

An interesting analysis is the average error visualiza- 
tion by hour of day, shown in Figure 6. It can be seen 
that early morning hours (00:00-05:00) are the most 
“easy” to predict, i.e., can be predicted with very small 
error. In contrast, the late morning trough afternoon 
hours (06:00-22:00) are predicted with larger errors. 

Figure 7 illustrates the average error by day of the 
week. Clearly, the days that produce higher errors are 
those associated with Mondays through Fridays, that 
represent the work week. It is important to notice the 
error scale between Figures 6 and 7. In Figure 6 the 
largest error is below 1.8 × 104, while in Figure 7 the 
largest error is below 1.6 × 104. This implies that errors 
are expected to be greater if the prediction is based on 
hourly data. From this one can conclude that the predic- 
tion is more independent of the day of the week, and 
more dependent on the hour of the day. 

The final analysis is in regard to the statistical proper- 
ties of the errors of the proposed LP-SVR model. Fig- 
ures 8 through 10 shows statistical plots known as “box 
plots.” These plots provide the following information: on 
each box, the central mark is the median, the edges of the 
box are the 25-th and 75-th percentiles, the whiskers ex- 
tend to the most extreme data points not considered out- 
liers, and outliers (+) are plotted individually. In terms of 

 

Figure 4. Error distribution for the LS SVM, BRT, FFNN, 
and LP-SVR regression methods. The methods with small- 
est variances are FFNN and LP-SVR. 
 

 

Figure 5. Absolute error distribution of the LS SVM, BRT, 
FFNN, and LP-SVR regression methods. The vertical lines 
indicate the mean absolute error for each of the four meth- 
ods as reported in Table 2. 
 
error measures, it is desired that the box plots have a very 
small box close to zero on the error axis, the median 
should be close to zero, the extreme points should be 
close to the box, and of course no outliers are desired. 

An hourly breakdown of the LP-SVR mean absolute 
prediction error is shown in Figure 8. It can be noticed 
that the early morning hours have smaller variability. 
Then a daily breakdown of the LP-SVR mean absolute 



Forecasting the Demand of Short-Term Electric Power Load with Large-Scale LP-SVR 

Copyright © 2013 SciRes.                                                                                SGRE 

455

 

Figure 6. Average error by hour of day. Note the error 
proportional difference in early morning hours and after- 
noon hours. 
 

 

Figure 7. Average error by day of week. Note the error pro- 
portional difference in working and non-working days. 
 
prediction error appears in Figure 9, from which one can 
see that Mondays and Fridays have the largest average 
errors and that Fridays have many outliers. Finally, a 
monthly breakdown is shown in Figure 10. This figure 
clearly shows that the months of November and Decem- 
ber exhibit the largest average errors, have the largest 
variability, and show many outliers. 

 

Figure 8. Hourly breakdown of the LP-SVR mean absolute 
prediction error. Note that the early morning hours have 
smaller variability. 
 

 

Figure 9. Daily breakdown of the LP-SVR mean absolute 
prediction error. Note that Mondays and Fridays have the 
largest average error. 

5. Conclusions 

This chapter presents an application of the proposed LP- 
SVR model to electricity load prediction. A number of 
eight different variables are utilized to construct regres- 
sion models. The study includes a comparison of the LP- 
SVR model against other state of the art methods, such as 
FFNN, BRT and LS SVM.  
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Figure 10. Monthly breakdown of the LP-SVR mean abso- 
lute prediction error. Note that the month of December 
exhibits the largest average error, and the largest variabil- 
ity. 
 

Experimental results indicate that the proposed LP- 
SVR method gives the smallest error when compared 
against the other approaches. The LP-SVR shows a mean 
absolute percent error of 1.58% while the FFNN ap- 
proach has a 1.61%. Similarly, the FFNN method shows 
a 330 MWh (Megawatts-hour) mean absolute error, 
whereas the LP-SVR approach gives a 238 MWh mean 
absolute error. This is a significant difference in terms of 
the extra power that would need to be produced if FFNN 
was used. 

The proposed LP-SVR model can be utilized for pre- 
dicting power loads to a very low error, and it is compa- 
rable to FFNN and over-performs other state of the art 
methods such as: Bagged Regression Trees, and Large- 
Scale SVRs.  
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