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ABSTRACT 

Compression force sensors are indispensable to tactile sensors in humanoid robots. We are investigating the application 
of low-cost electrically conducting rubber sheets to force sensors, of which the biggest problem is its poor reproducibil-
ity. We have found that the deposition of aluminum by a vacuum evaporation method shows such an excellent charac-
teristic that the sensor can be used in a wide range under 10.33 N/cm2. In this article, we investigated time response of 
the sensors and also studied how the radiation heating during the vacuum evaporation process for Al deposition affected 
their sensing property. We found that the radiation heating induces deterioration from the point of view of standard de-
viation of the output voltage of the sensors at a transient region. We convince that a low-temperature Al deposition 
method should be developed to form electrodes on the electrical conducting rubber sensors. 
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1. Introduction 

Along with the development of humanoid robots, force 
sensors play a key role in controlling the actuation of robot 
fingers [1]. In order to realize the elaborate function of 
robot fingers, we need a sophisticated control system. 
Even with a highly designed control system, a highly 
reproducible force sensor is crucial for good control be-
cause the tactile information is used as control parame-
ters in dexterous manipulation of humanoid fingers [2-4]. 

The studies on tactile sensors have been fully reported 
so far. The types of the sensors are ranged in a wide vari-
ety. A kind of them is typically based on a strain gauge 
or a piezoresistive device. The resistance variation is 
brought about by the applied strain in these devices. The 
sensor arrays of this type have been reported nowadays 
[5-7]. The arrays of micro sensors demonstrated the abil-
ity in position sensing. In some cases, micro-machine 
technique was included to form this kind of sophisticated 
sensors. Some researchers have studied three-dimension 
sensor arrays that can detect shear forces [8]. Many other 
sensors of different types have been reported widely 
[9-29]. In order to miniature the sensing system, silicon- 
based microelectromechanical system (MEMS) has been 
challengingly applied [30,31] to piezoresistive [32-35] or 
capacitive [36,37] type of tactile sensors. 

We pay attention to a conductive rubber sheet that 
varies electric resistance with compressive force. The 
conductive rubber consists of an elastomer enriched with 
conductive filler particles. The resistance of the rubber 
sheet reduces when external compressive pressure is ap-
plied. The material shows isotropic conduction. The ad-
vantage of the rubber sheet as a force sensor is the low 
cost of the flexible material as well as the large area sen- 
sing ability. In order to deal successfully with the short of 
reliability of the material, it still requires more improve-
ments in the fabrication of this sensor. The formation of 
electrodes on the rubber surfaces comes into an issue at 
first. Electrodes are a basic component of electric devices 
but the issue has not been examined so far. 

We investigated the rubber sensors with four kinds of 
electrodes in our previous work: Al thin film, Al depos-
ited on the rubber sheet by a vacuum deposition method, 
conducting adhesive Cu tape and silver paste spread on 
the surfaces. The relationship of the resistance to applied 
force has been studied and discussed from the point of 
view of a force sensor in a robotic finger. Then we have 
concluded that the Al deposition in vacuum is the most 
preferable with regard to a force range and reproducibil- 
ity [38]. However, we concerned the deterioration in- 
duced by the radiation heating during the vacuum depo- 
sition because the rubber sheet was installed very near to 
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the evaporation boat, of which the temperature rose so 
high as to melt Al. 

In this article, we studied time response of the rubber 
sheet sensors and discussed the standard deviation of the 
transient output voltage. Further, we investigated the ra- 
diation effect of the rubber sheet by performing a blank 
test. 

2. Experimental Details 

We used commercially available electrically conducting 
rubber sheets (30-mm square and 15-μm thick) in our ex- 
periments. We prepared two kinds of metal contacts to 
the rubber sheets: (Sample A) aluminum thin foil (12 μm 
thick) was put on the surface and the perimeter was fixed 
with adhesive tape and (Sample B) aluminum was depos-
ited on the surfaces by a vacuum evaporation method. 

For a vacuum deposition of Al, a rubber sheet was in-
stalled at 13 cm from the evaporation boat where starting 
material of Al (0.144 g) was filled. The boat was then 
red-heated up gradually by electric current for 340 s. The 
entire Al in the boat was evaporated and then deposited 
on the surface of the rubber sheet. This process was re-
peated twice successively to form a 5.5-μm thick Al film. 
The same film was also deposited on the other side 
(Figure 1). 

We prepared Sample C in the same way as Sample A. 
Before attaching Al foil, the rubber experienced accept-
ing the radiation only from the empty boat in the vacuum 
deposition chamber. This sample was used as a blank test  

 

 

Figure 1. The outlook of the rubber sheet sensor with alu-
minum electrode deposited on the surface. On the deposited 
aluminum, Al foil was attached as a conductor to a detect-
ing circuit. 

of Sample A with a radiation effect during the deposi-
tion. 

In order to apply the force uniformly in the surface 
area, the sensor was put between two solid Al plates. A 
calibrated weight of 0.5 or 1 kg was put on the plate at 0 
s. Each weight corresponds to 0.54 and 1.1 N per 1 cm2, 
respectively. The former value is in a typical force range 
for normal finger manipulation that was reported to be 
from 0.15 to 0.88 N [39,40]. 

We show in Figure 2 the detecting circuit of the sen-
sor. The r(t) denotes the resistance of the rubber sheet 
sensor that has several mega ohm without any force onto 
it and decreases down to the order of kilo ohm when the 
sensor is pressed by a finger. A resistor (15 kΩ) and a 
capacitor (4.7 μF) attached together in parallel was con-
nected in series to the sensor, as shown in the figure. The 
output voltage V0(t) was taken across the added circuit 
elements. The capacitor worked to reduce high frequency 
noise. The V0(t) was measured every 5 ms until 1 s. This 
1 s scan was repeated 100 times at each measurement. 

3. Results and Discussion 

We show the time response of the output voltage V0(t) in 
case of Sample A in Figures 3 and 4, corresponding to 
the weights of 0.5 and 1 kg, respectively. Transient re-
gion is extended to 0.4 s in Figure 3 while it is up to 0.6 
s in Figure 4. The heavier weight demanded more time 
to be settled to a final value. The final value is 2.61 and 
3.39 V in Figures 3 and 4, respectively, but the repro-
ducibility is unfortunately poor. It is possibly derived 
from the inherent property of the conducting rubber. The 
relative error is 22.7% and 13.3%, respectively, so that it 
is smaller when the weight is the heavier. 

We have performed the same experiment on Sample B 
and obtained the results shown in Figures 5 and 6. The 
transient region is extended to 0.35 and 0.4 s, respec-
tively. The transient region is slightly reduced compared 
with sample A. The feature is quite different from Fig-
ures 3 and 4 at two points on the whole. One point is the 
 

C

r(t) 

V0(t)R 

 

Figure 2. A detecting circuit for the rubber sensor r(t). Di-
rect current voltage of 5 V was applied across the terminals 
(V in the figure), and the voltage of V0(t) was measured. 
The R and C were 15 kΩ and 4.7 μF, respectively. 

Copyright © 2013 SciRes.                                                                                  JST 



M. OHMUKAI  ET  AL. 38 

0        0.2        0.4        0.6        0.8         1
t [sec] 

4 

 

3 

 

2 

 

1 

 

0 

V
0(

t)
 [

V
] 

 

Figure 3. The time response of V0 when aluminum foil was 
directly attached to the rubber sheet (Sample A). The 
weight was 0.5 kg. The measurement was repeated 100 
times. 
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Figure 4. The time response of V0 when aluminum foil was 
directly attached to the rubber sheet (Sample A). The 
weight was 1 kg. The measurement was repeated 100 times. 
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Figure 5. The time response of V0 when aluminum was de- 
posited by a vacuum evaporation method on the rubber 
sheet (Sample B). The weight was 0.5 kg. The measurement 
was repeated 100 times. 
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Figure 6. The time response of V0 when aluminum was de-
posited by a vacuum evaporation method on the rubber 
sheet (Sample B). The weight was 1 kg. The measurement 
was repeated 100 times. 

output voltage is smaller by one order of magnitude. The 
final values are 0.18 and 0.34 V, respectively. We con-
sider the smallness of the output voltage here. Al elec-
trodes were formed on the both side of the rubber and the 
each electrode can firmly cling to the surface, which is 
one of the advantages of vacuum deposition. Since the 
sensor became rigid owing to the two pieces of metal 
electrodes, the rubber sheet was possibly less deformed 
by the same pressure for around 1 N/cm2. The difference 
of final output value between the two samples is consis-
tent with the results reported in our previous results [38]. 
It should be noticed that the relative error for Sample B 
was 59.5% and 43.2% in a final value, respectively. The 
large error, which is far beyond twice of that of Sample 
A, is actually annoying obstacle for a feedback control 
system. The other point is seen in the convergence state 
in the transition region. Sample A shows the gradual in-
crease with time even if there is a large dispersion, but 
Sample B does not show any gradual increase but full 
dispersion between zero and the maximum value at any 
time in the transition region. The tendency is also based 
on the rigid property of Al deposited rubber sheets. 

We next consider the results in case of Sample C. The 
obtained data are depicted in Figures 7 and 8, respec- 
tively. Both the transient region and the magnitude of  
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Figure 7. The time response of V0 when aluminum foil was 
directly attached to the rubber sheet after the radiation 
heating treatment as a blank test (Sample C). The weight 
was 0.5 kg. The measurement was repeated 100 times. 
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Figure 8. The time response of V0 when aluminum foil was 
directly attached to the rubber sheet after the radiation 
heating treatment as a blank test (Sample C). The weight 
was 1 kg. The measurement was repeated 100 times. 
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output voltage are similar to those of Sample A. We 
might not notice the difference between Sample A and C 
at a glance, but the relative error in the transient region is 
slightly larger with a close eye. We then calculate the 
standard deviation of each one hundred data under 0.2 s 
(Figures 9 and 10) to investigate the relative error more 
closely. Figure 9 gives the transient variation of the 
standard deviation of the output voltage when the loaded 
weight is 0.5 kg. Figure 9 shows an interesting fact that 
the standard deviation noticeably reduces along with time 
only in Sample A. Although the physical structure of 
Sample C was the same as Sample A, the standard devia-
tion of Sample C behaves rather in the same way as 
Sample B. It should be concluded that the tendency of no 
reduction of the standard deviation derived from the ra-
diation heating effect during the deposition. It is because 
the evaporation boat becomes red heated near the rubber 
sheet during the deposition. Although we do not confirm 
the surface temperature of the rubber sheet precisely, the 
results of the blank test led us to the conclusion. Another 
interesting point is that this conclusion is not the case  
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Figure 9. The standard deviation of V0 when the weight was 
0.5 kg as a function of time for the three kinds of samples. 
Only Sample A shows the reduction of the standard devia-
tion with time. 
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Figure 10. The standard deviation of V0 when the weight 
was 1 kg as a function of time for the three kinds of samples. 
All samples show the same characteristics. 

when the loaded weight was 1 kg, the result of which is 
shown in Figure 10. Then the effect of the radiation 
heating only appears when the weight is small, in other 
words, deformation of the rubber is not large. It should 
be required to remove the radiation heating effect in or-
der to suppress the deterioration of the output voltage 
fluctuation. A sputtering method may be a hopeful can-
didate for this problem. 

4. Conclusion 

We are studying the electro conducting rubber sheet to 
apply it to a compression force sensor that can be realized 
at formidably low cost. In this paper, two kinds of elec-
trode: Al foil and deposited Al by a vacuum evaporation 
method, have been engaged. We found that the radiation 
heating of the rubber sheet during the deposition is dete-
riorated in the point of view of standard deviation of the 
output voltage under 0.2 s. It was clarified with the re-
sults including a blank test. However, this tendency was 
not observed when the force was large. A low-tempera- 
ture deposition method on the rubber sheet is expected to 
improve the reproducibility of the output voltage. 
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