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Abstract 
 
Tangent bifurcation is a special bifurcation in nonlinear dynamic systems. The investigation of the mechan-
ism of the tangent bifurcation in current mode controlled boost converters operating in continuous conduc-
tion mode (CCM) is performed. The one-dimensional discrete iterative map of the boost converter is derived. 
Based on the tangent bifurcation theorem, the conditions of producing the tangent bifurcation in CCM boost 
converters are deduced mathematically. The mechanism of the tangent bifurcation in CCM boost is exposed 
from the viewpoint of nonlinear dynamic systems. The tangent bifurcation in the boost converter is verified 
by numerical simulations such as discrete iterative maps, bifurcation map and Lyapunov exponent. The si-
mulation results are in agreement with the theoretical analysis, thus validating the correctness of the theory. 
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1. Introduction 
 
In recent years, ones are quite interested in chaos exhi-
bited in the field of power electronics. They are becom-
ing the hot spots of the study in the field. DC-DC con-
verters are a kind of strong nonlinear system. They exhi-
bit various bifurcation and chaos behavior under some 
operating conditions, such as period-doubling bifurcation 
[1-5], Hopf bifurcation [6-8], border collision bifurcation 
[9-11], tangent bifurcation [12,13] and chaos behavior 
[14-20]. Bifurcation is a complex structure in nonlinear 
system. The chaos is characteristic of non-repeat, uncer-
tainty and is extreme sensitive to initial conditions. These 
nonlinear phenomena make the nonlinear dynamic cha-
racteristics of DC-DC converter more complex. Deep 
investigation of these nonlinear phenomena is of great 
benefit to understanding the nonlinear behavior and 
practical design.  

Up to now, most published papers are mainly about 
the period-doubling bifurcation in DC-DC converters. 
The tangent bifurcation, which is a special bifurcation, 
has been less investigated. The most studies of tangent 
bifurcation mainly focus on the numerical simulation 
modeling. The main approaches used for simulation in-
clude bifurcation diagram, Lyapunov exponent. The two 
methods are characteristics of simpleness and intuition, 

but the main shortcoming of that is large computing 
quantity, time consuming and blindness. The essential 
mechanism causing tangent bifurcation was not analyzed 
in these simulation methods. However, no rigorous at-
tempts have been made to analyze formally the essential 
mechanism leading to the tangent bifurcation in DC-DC 
converters.  

Boost converters are a kind of important converters 
with wide applications. Current mode control, being one 
of the most commonly used control schemes in DC-DC 
converters, has received much attention to power elec-
tronics engineers. Although the work in [12] gives no 
theoretical insights into the underlying cause of tangent 
bifurcation in such system, it does prompt the important 
question of what mechanism may give rise to tangent 
bifurcation behavior. This paper attempts to answer to 
this question in the light of the theories of nonlinear dy-
namic systems. The investigation of the mechanism of 
the tangent bifurcation in current mode controlled boost 
converters operating in continuous conduction mode 
(CCM) is deeply studied. In fact, there are strict stability 
criteria and the conditions leading to the tangent bifurca-
tion in mathematics based on the theories of nonlinear 
dynamic systems [13,14]. Based on the tangent bifurca-
tion theorem, the conditions leading to the tangent bifur-
cation in the discrete iterative model of the boost con-
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verter are demonstrated mathematically. Discrete itera-
tive maps, bifurcation diagram, Lyapunov exponent are 
done to analyze the mechanism and evolution of leading 
to the tangent bifurcation. The simulation results are in 
agreement with the theoretical analysis, thus validating 
the correctness of the theory. The methods proposed in 
the paper can also be suitable to analysis of the tangent 
bifurcation and chaos of other kinds of converter circuits.  
 
2. Discrete Iterative Map of a Boost  

Converter 
 
In Figure 1, the circuit model of a boost converter is 
shown, which consists of a switch S, a diode D, a capa-
citor C, an inductor L and the load resistor R connected 
in parallel with the capacitor. The assumptions are made 
as follows: 

1) The boost converter operates in continuous conduc-
tion mode. 

2) All the components in the boost converter circuit 
are ideal, no parasitic effects are considered. 

Hence, there are two circuit states depending on 
whether S is closed or open. Assume that the circuit is at 
the switch state 1 when the switch S is off and diode D is 
on, and at the switch state 2 when S is on and D is off. 
The two switch states toggle periodically. 

The boost converter is controlled under the current 
mode. Switch S is controlled by a feedback path that 
consists of a flip-flop and a comparator. The comparator 
compares the inductor current iL with a reference current 
Iref. The switch is triggered to ON when the clock pulse 
is received and is triggered to OFF when the inductor 
current reaches the reference current Iref. Specifically, 
switch S is turned on at the beginning of each cycle, i.e. 
at t=nT, where n is an integer, T is the switching period. 
The inductor current iL increases linearly while switch S 
is on. As iL approaches to the value of Iref, switch S is 
turned off, and remains off until the next cycle begins. 

 

 
Figure 1. Circuit configuration of current-mode boost con-
verter. 

When the switch S closed, diode D is reverse biased. 
Figure 2 shows the inductor current waveform. The 
circuit parameters of the boost converter are listed in 
Table 1. 

Let x denote the state vector of the circuit, i.e., 

c

L

v
x

i

 
  
 

                    (1) 

where vC is the voltage across the capacitor and iL is the 
current through the inductor.  

The state equation for the circuit in any switch state 
can be written in the form of 

.

i i inx A x B V                 (2) 

where Ai and Bi are the system matrices in switch state i, 
and Vin is the input voltage. In switch state 1, we have 
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And in switch state 2, we have 
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The switch S is turned off when the inductor current 
iL reaches reference current Iref. The closed-state time tn 
can be obtained from (2) by integration, therefore the 
closed-state time tn is calculated by the Equation (3). 
 

 
Figure 2. Inductor current waveform. 

 
Table 1. Circuit parameters. 

Circuit Components Values 

Switching period T 100 μs 

Input Voltage Vin 10 V 

Load Resistor R 20 Ω 

Inductor L 1 mH 

Capacitor C 12 μF 

Reference Current Iref 0.5~5.5 A 

Iref 

iL 

Iref 
iL

t

t

R C 

L 

Vin Vo
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( )n ref n
in

L
t I i

V
                (3) 

Subscript n denotes the value at the beginning of the 
nth cycle, i.e., in = i(nT), vn = v(nT). 

The capacitor voltage corresponding to instant tn is 
calculated by the following equation 

( )
nt

RC
C n nv t v e


                (4) 

The discrete iterative model of the boost converter can 
be derived as follows from the two cases, i.e., tn ≥ T and 
tn < T. 

Case 1. tn ≥ T. It means that the converter is in switch 
state 1 during a switching period T. The instantaneous 
value of in and vn at next clock instant, in+1 and vn+1, can 
be calculated with in and vn as initial values. 

1
in

n n

V
i i T

L                   (5) 

1

T

RC
n nv v e



                   (6) 

Case 2. nt T . It means that the converter is switched 

from switch state 1 to switch state 2 during a switching 
period T. The instantaneous value of in and vn at next 
clock instant, in+1 and vn+1, can be calculated with Iref and 

nt

RC
nv e


as initial values.  

The solution depends on the parameters of circuit val-

ues of R、L and C. From Table 1, we have 
24

1 0
R C

L
  . 

In this case, the solutions of the characteristic equation 
corresponding to the switch state 2 are a pair of complex 
conjugate roots. It leads to a damped oscillatory process. 
Hence, the discrete iterative maps of the boost converter 
can be derived  
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From (5-8), the discrete time values of x at t=nT for all 
n can be obtained. The bifurcation diagram of the boost 
converter with reference current Iref as parameter is 
shown in Figure 3, the horizontal direction is the refer-
ence current Iref which is between 0.5 A and 5 A, the ver-
tical direction is the state variable iL which ranges from 
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Figure 3. Bifurcation diagram of the boost converter with 
Iref as parameter. 
 
0.5 A and 5 A. The bifurcations, subharmonics and chao-
tic behavior are indicated in the diagram. As shown in 
Figure 3, the boost converter goes through period-1, 
period-2 and eventually exhibits chaos. The period-1 
solution is stable until Iref = 1.7059 A whereupon a period 
doubling bifurcation takes place. The converter even-
tually goes to chaos when Iref = 2.7 A. It can be interes-
tingly observed that a small periodic window, which also 
exhibits period doubling cascade, is embedded in the 
chaos region. In the periodic widow, the converter expe-
riences period-3 to period-6 and so on just above Iref = 
4.791 A. The phenomenon that system transits from 
chaos to period-3 is known as tangent bifurcation. 

In Figure 4, the larger of the Lyapunov exponents is 
plotted as a function of the parameter Iref over the same 
range as in Figure 3. It is well known that the presence of 
chaos is signaled by positive Lyapunov exponent. A nega-
tive Lyapunov exponent is characteristic of dissipative 
(non-conservative) systems, which exhibit point stability. 
A Lyapunov exponent of zero is characteristic of a 
cycle-stable system. In this case, the orbits maintain their 
separation. The tangent bifurcation will be happened when 
the Lyapunov exponent is changed from the started posi-
tive value to zero then to negative value. At 1 7059ArefI . , 
where the fixed point changes from attracting to repelling 
and an attracting periodic orbit is born, the Lyapunov ex-
ponent is 0. Just above 2 7ArefI . , the Lyapunov expo-
nent is positive, which means that the system is chaotic. 
This is the same range in which the bifurcation diagram 
given in Figure 3 showed a whole interval. For larger 
values of Iref, above 4.791 A, there is another short para-
meter interval in which there is an attracting period-3 orbit 
and the Lyapunov exponent is negative. Therefore, the 
tangent bifurcation will be happened.  

i (
n)

/A
 

Iref/A 
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Figure 4. Larger Lyapunov exponent diagram. 

3. The Conditions Leading to Tangent  
Bifurcation  

3.1. A Theorem of Tangent Bifurcation  

The theorem of tangent bifurcation is briefly reviewed in 
this section. 

Consider the discrete-time nonlinear system 

 ,x f x                  (9) 
where x is the system variable and μ is a parameter.  

A point *x  is called a fixed point or a stationary 
point if  * * *,x f x  . 

It is convenient to have a notation for these functions. 

We write  0f x x  for the 0th iterate that is the iden-

tity,  1f x for  f x , and  2f x  for the composition 

of f with f, that is     2f x f f x . Continuing by 

induction, we obtain     ( ) 1,n nf x f f x  , is the 

composition of f with itself n times. Using this nota-

tion, for the initial condition 0x ,  1 0x f x ,  2
2 0x f x , 

and  0
n

nx f x . 

Theorem 1 [13,14] (Tangent Bifurcation). Assume that 
f is a C2 function from R2 to R. We write 
   f x, f x .   Assume that there is a bifurcation 

value *  that has a fixed point *x  with derivative 

equal to one 

1).  * * *f x , x   

2).  *
' * 1f x


  

3). The second derivative  *
'' * 0f x


 , so the graph of 

*f  lies on one side of the diagonal for x near *x . 
4). The graph of f  is moving up or down as the pa-

rameter   varies, or more specifically,  

 * *, 0
f

x 






 

The tangent bifurcation takes place in the nonlinear 
system at the fixed point  * *,x  , 

3.2. Derivation of One-Dimensional Discrete  
Iterative Map  

The research of tangent bifurcation should be start from 
one-dimensional discrete iterative map [12,13]. With one 
state vector be fixed, reduction of dimension can be done 
in the boost converter so that the boost converter is 
transformed into one-dimensional dynamic system. In 
this study, the capacitor voltage is taken as the state va-
riable needing to be fixed, and the inductor current is 
chosen as the state variable. The capacitor voltage vc is 
assumed to be a constant COV , then, the inductor current 
increases and decreases linearly during any period. The 
following one-dimensional discrete iterative map can be 
derived by substituting of c COv V  into (5-8), 

Case 3. nt T .  

 1
in

n n n

V
i f i i T

L               (10) 

Case 4. .nt T  

 

 1

1

3 1 2 1sin cosn

n n

kt in
n n

i f i

V
e A t A t

R
 







  
     (11) 

where 
2

2
3

nkt
in coV V e kLA

A
L

 
  

From (10) and (11),  2
nf i  is obtained 
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Similarly, 3 ( )nf i  is obtained 
Case 7. t’

n3 ≥ T.  
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The graph of  nf i  and the diagonal is shown in 
Figure 5, and the graph of  3

nf i  and the diagonal is 
shown in Figure 6, in which the parameters are same as 
those in [12], that is, 17.2 V, 4.7915 A,CO refV I   

 2 A,5 Ani  .  
Compared with [12], the discrete iterative map of 
 nf i  is different at the interval of [4.75, 5], and that of 

f3(in) is different at the interval of [4.85, 5]. But the dif-
ference has no effect on the analysis of the equilibrium 
point. These results testify the validity and practicality of 
the proposed discrete iterative map method of  nf i  
and  3

nf i . 
 
3.3. The Conditions Leading to Tangent  

Bifurcation 
 
Definition 1. The graph of a function f is the set of points 

   ,x f x . The diagonal, denoted by △, is the graph 

of the identity function that takes x to x: △   ,x x  

Obviously, a point p is fixed for a function f if and 

only if   ,p f p  is on the diagonal △.  

In theorem 1, a fixed point is requested according to 
condition (a). The condition (b) indicates that the iter-
ative map function lose the stability in the instability 
boundary, in other words, the tangent bifurcation will 
happen in the instability boundary. Form Figure 6, it 
can be seen that there are four fixed points, i.e., 

     3 (3)2.82,  4.7515 2.82, 3.82,  4.7515 3.82,f f   
   3 (3)(4.25, 4.7515) 4.25, 4.79,  4.7515 4.79f f  , thus 

satisfying the condition (a) of theorem 1.  

Three fixed points  *1 *2 *42.82, 3.82, 4.79n n ni i i    

are tangent to the diagonal that the slopes of them are +1,  
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Figure 5. Graph of f(in). 
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Figure 6. Graph of f3(in). 

 
and the slope of the fixed point *3( 4.25)ni   is –2. It 

means that 
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It satisfies the condition (b) of theorem 1.  
From (14) and (15),  (3)

n reff i I   can be worked 
out, 

Case 7. ’
3 .nt T   

 (3) 0n reff i I              (16) 

Case 8. ’
3nt T .  

 

 
3

3

(3)

5 3 2 3

5 3 32
3 5 3 2

,

sin cos

sin cos
sin cos

n ref
ref

ktn
ktn

n n
ref

n n
n n

ref ref ref ref

f i I
i

de
A t A t e

dI

dA d t d tdA
t A t A

dI dI dI dI

 

 
 









 

 
    

 
(17) 

Substituting of circuit parameters and the values of 

CO refV ,I  into (16) and (17), gives  
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 (3)
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ref n
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There is no question that it satisfies condition (c) of 
theorem 1. 

The secondary partial derivative  
2

(3)
2

,n ref
n

f i I
i


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can be also obtained according to (14) and (15), which is 
as follows 
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(19) 
Similarly, substituting of the parameters values into 

(18) and (19), gives 
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Without question, it satisfies condition (d) of theorem 1. 
In summary, the current mode controlled boost con-

verter operating in CCM satisfies the hypothesis of theo-
rem 1. Therefore, the discrete iterative map of f3(in) un-
dergoes the tangent bifurcation at the fixed point, and the 
tangent bifurcation behavior occurs in this system.  
 

4. Conclusions  
 
The mechanism of tangent bifurcation in the current 
mode controlled boost converter operating in CCM is 
explored in this paper. Based on the discrete iterative 
map of the boost converter, by taking the capacitor vol-
tage as a constant, and choosing the inductor current as 
the state variable, the one-dimensional discrete iterative 

maps of  nf i  and    3
nf i  have been derived. It is 

demonstrated in mechanism that the tangent bifurcation 
will happen inevitably in the boost converter according 
to the tangent bifurcation theorem. The computer simula-
tions, such as discrete iterative maps, bifurcation diagram 

with reference current refI  as parameter, Lyapunov 

exponent are used to verify the phenomenon. It has been 
shown that tangent bifurcation does exist for this system. 
The method presented in the paper provides the theoreti-
cal basics for analyzing the tangent bifurcation and chaos. 
It has generality and can be also used to analyze the tan-
gent bifurcation of other kinds of DC-DC converters. 
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