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ABSTRACT 

All the experimental values of the Deuteron nucleus except the magnetic moment are theoretically derived using the 
ordinary methods of quantum mechanics along with the morphed gravitational potential energy. To convince that the 
potential energy function used is indeed the right one, it is applied to determine the energy spectrums of the nuclei: 1) 
Triton, 2) helium-3, 3) lithium-7, 4) Beryllium-9, and 5) Beryllium-8. The Morphed Coulomb Potential Energy (MCPE) 
is also obtained. With the help of MCPE and the gravitational potential energy of the electron, the charge quantum num- 
ber is obtained. For galaxies, the two dominant forces that are responsible for the expansion, contraction or stationary 
state of the universe are obtained. 
 
Keywords: Morphed Potential Energy; Bindingenergy; Radius; Quadrupole Moment; Superposed State; Morphed  

Coulomb Potential Energy 

1. Introduction 

The Deuteron nucleus is the simplest of all the nuclei. It 
consists of a Proton and a neutron with a total spin quan- 
tum number of one. The orbital angular momentum is zero. 
The binding energy of this nucleus is 2.2251 MeV. The 
Deuteron has a root-mean-square electro-magnetic radius 
of approximately 2.1 F [1]. A radio-frequency molecular 
beam method has been employed to determine the quad- 
rupole moment of the Deuteron as Q = 0.00282 barn. The 
magnetic dipole moment is 0.857393µ  nuclear mag. 

The Deuteron is a quantum mechanical system. Can 
we derive these results by the methods of quantum me- 
chanics? To determine these results theoretically, one 
should know the correct potential energy that operates 
among the nucleons. In references [2,3], we obtained a 
potential energy which was closely connected to the gra- 
vitational potential energy. We called this potential en-
ergy the “Morphed Gravitational Potential Energy, MGPE”. 

In Section 2, we will apply this MGPE for the Deu- 
teron nucleus to find its energy spectrum and wave func- 
tions. In this section, we will determine the ground state 
energy as well as the radius of this nucleus. In Section 3 
the quadrupole moment is estimated using the methods 
of quantum mechanics. The magnetic moment is also 
estimated in this section. Section 4 is used to determine 
the ground state wave functions and binding energies of 
some nuclei. Section 5 contains our conclusions. 

2. Deuteron Nucleus 

The morphed gravitational potential energy for the Deu- 
teron nucleus is found to be [2,3] 

 
2

2
0

p nm mg c
V r

rM
 


,           (2.1) 

where, 
2

2 0.032384
0.2254

e
g   .         (2.2) 

In the above expression 2 1

137
e   is the fine structure  

constant and 0.2254 is the Weinberg mixing parameter 
[4]. The parameter 2

0M  is different for each nucleus. 
For the Deuteron nucleus it is given by [3], 

2
0 0.931826 10 gmM   48 2 .        (2.3) 

The time independent Schrödinger equation for the 
deuteron is given by, 

     
2

2 Ψ , , Ψ , ,
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V r r E r  


 
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  .   (2.4) 

Here the reduced mass   is given by, 

240.836883 10 gmp n

p n

m m

m m
   


.      (2.5) 

The spherically symmetric potential leads to the solu- 
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tion [5-7], 

    Ψ , , ,n mr R r Y       

n 

,     (2.6) 

Where the quantum numbers n,  and m have the 
following values as in the case of the hydrogen atom: 



1,2,3  and 0,1, 2, , 1,

and , 1, , ,

n

m

 
    
  
     

The radial wave function is given by, 

 2 12en nR A L


 
 

  
  .          (2.7) 

The dimensionless parameter   in Equation (2.7) is 
given by, 

0

2r

na
  , where n is the principal quantum number. (2.8) 

Here, 
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The energy spectrum for this case is given by, 
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The normalization constant A in Equation (2.7) is giv-
en by, 
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All the above results are obtained by a simple tran- 
scription of the hydrogen atom results with an appropri- 
ate change of variable. The ground state energy of the 
deuteron nucleus is given by −2.2251 Mev. This is an 
excellent result. The radius of the deuteron nucleus is 
half of Equation (2.9) whereas Equation (2.9) gives the 
distance between the two nucleons. The radius is the dis- 
tance of either of the nucleons from the center of mass. 
This result also agrees pretty well with the experiment. 
There are excited energy levels but these are a blessing in 
disguise. These will be necessary to explain the quadru- 
pole moment of the deuteron nucleus as we show in the 
next section. 

3. The Quadrupole Moment and the  
Magnetic Moment of the Deuteron 

Experimentally a small positive electric quadrupole mo- 
ment is observed for the Deuteron. The total angular 
momentum quantum number J = 1 for the Deuteron. It is 
also in a definite state of parity. The J value equal to one 
can be obtained from different combinations of the or- 
bital angular momentum  and the spin S such as, 

0, 1; 1, 0; 1, 1and 2, 1S S S S           , (3.1) 

and no more. For the deuteron the principal element of 
the total wave function is the 3S1 state. The only other 
state in which the two particles give the same total angu- 
lar momentum and parity is the 3D1 state ( 2 , S = 1 
and J = 1). We therefore conclude that the total wave 
function of the deuteron must have the form 

100 320Ψ Ψ ΨS Da a  .           (3.2) 

From Equations (2.6 & 2.7) we readily find that, 

0
100 3
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 ,             (3.3) 

And, 
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These wave functions are solutions of the Schrödinger 
equation of the deuteron nucleus with the morphed gravi- 
tational potential energy. The superposed state given by 
Equation (3.2) shows that the shape is not spherical and 
this leads to a quadrupole moment for the Deuteron nu- 
cleus. The quadrupole 

Moment is given by [8-10], 

   * 2 2 * 2 2Ψ 3 Ψd Ψ 3cos 1 ΨdQ z r r       . (3.5) 

In the center of mass system the distance of the neu- 
tron and proton from the center of mass is r/2 and only 
the proton contributes to Q, the neutron being uncharged. 
The quadrupole moment is therefore given by, 

 * 2 21
Ψ 3cos 1 Ψd

4
Q r   .       (3.6) 

When we insert Equations (3.2)-(3.4) into Equation 
(3.6) we obtain four volume integrals and the very first 
integral will be zero, the second and third integrals are 
equal and the fourth integral is non-zero and this gives, 

2 2
0

2 1.550069 72

4 4S D DQ a a


a a    
.    (3.7) 

The estimation of the quadrupole moment of the deu- 
teron is now possible if we now can fix the expansion 
coefficients S  and a Da  of the superposed wave func- 
tion of Equation (3.2). These are given by, 

0.999893Sa  ,             (3.8) 

and, 

0.014629Da  .            (3.9) 

These expansion coefficients satisfy the following re- 
lation to conserve the probability. 

2 2 1S Da a  .              (3.10) 
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From the above the estimated value of the quadrupole 
moment of the deuteron is, 

24 20.00283114 10 cmQ   .      (3.11) 

The above result is obtained without assuming any 
tensor forces. We will now find the expectation value of 
the total Hamiltonian for the superposed state given by 
Equation (3.2). 

   

*

2 2
2 2

Ψ Ψd

2.2251 MeV 2.2251 MeV

1 3S D

E H

a a



 
 


. (3.12) 

The above expectation value is −2.224677 MeV which 
is almost equal to the ground state energy of the deuteron 
in the s-state. 

The operator for the magnetic moment μ of the Deu- 
teron is given by. 

2 2
11

1 1 1 1

2 2 2 2p n p n S                
   

 



, 

(3.13) 

where S is the total spin quantum number and  is the 
orbital angular quantum number. The expectation value 
of the above operator for the superposed state of Equa- 
tion (3.2) is given by, 



  2
11

3 1
0.879637 nm

2 2p n p n Da           
 

. 

(3.14) 

This value is no different from the sum of the two 
magnetic moments. The experimental value is about 0.85 
nm. This value can be reproduced if we take . 
But then the quadrupole moment will not be correct with 
this value of 

2 0.039Da 

Da . We believe that the quadrupole mo- 
ment calculation is more correct because it is based on 
wave functions obtained by solving the equation. The an- 
swer for the magnetic moment should be found through 
relativistic extension of the model. 

4. MGPE for Some Nuclei 

To show that the “Morphed Gravitational Potential En- 
ergy, (MGPE) is indeed correct we apply this potential 
energy to some more nuclei. 

1) Triton nucleus is made up of one proton and two 
neutrons. The binding energy of this nucleus is [11]  

8.4817 MeV. The total spin is J = 
1
2 +. The core for this  

nucleus mustbe a proton-neutron because this combina- 
tion is more tight than a neutron-neutron binding [see 3]. 
Therefore the core mass  

. The MGPE for 
this nucleus is, 

  243.347534 gm10c p nm m m    

 
2

2
0

c nm mg c
V r

rM
 


,           (4.1) 

where 
2
0 1.103243 10 gmM   48 2 .        (4.2) 

This value is obtained by comparing the ground state 
energy with the binding energy of this nucleus. The or- 
bital angular momentum for the ground state must be 
zero for this nucleus. Hence the principal quantum num- 
ber n = 1, 2, 3, etc. The energy Eigen values are given by  

22
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where, 

241.11635 10 g7c n

c n

m m

m m
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
m .       (4.4) 

2) The nucleus 2He3 contains two protons and a neu- 
tron. The binding energy of this nucleus is 7.178 MeV. 
and J = (1/2)+. So 0,1, 2,   for this nucleus. The 
core mass for this nucleus is also same as for the triton 
nucleus. The total potential energy in this case is given by, 

 
2 2

2
0

c pg cm m e c
V r

rM r
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 
,         (4.5) 

where, 
2
0 1.142021 10 gmM   48 2 .          (4.6) 

The energy spectrum for this nucleus is given by, 
22 2
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g cm m e c
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n M n

  
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.1780 MeV
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(4.7)  

The reduced mass in this case is given by, 

241.11533 10 g2c p

c p

m m

m m
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
m .       (4.8) 

The principal quantum number for this nucleus is n = 1, 
2, 3, It should be noted that Helium-4 and Helium-3 Nu- 
clei have different values of M0 in the MGPE expres- 
sions. 

3) The nucleus 3Li7 (Lithium) Has a binding energy of 
39.2452 MeV and a J = (3/2)−. Therefore 1, 2, 



24 g2 m10

 
and the principal quantum number  for this 
nucleus. The core of this nucleus consists of 3 protons 
and 3 neutrons and hence c . 
There is a neutron outside this core and the Potential en- 
ergy is given by, 

2,3, 4n 

10.04260m

 
2

2
0

c ng cm m
V r

M r
 


,          (4.9) 

Copyright © 2013 SciRes.                                                                                 JMP 



C. V. CHANDRARAJU 1183

where, .   (4.10) 2
0 0.872391 10 gmM   48 2

The energy spectrum for this nucleus is given by, 
22
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1 156.9808 MeV
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c n

n
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E

n M n

  
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 





. (4.11) 

For this case the reduced mass is given by, 

241.435504 10 gmc n

c n

m m

m m
   


.    (4.12) 

4) The binding energy of the Beryllium nucleus, 4Be9, 
is 58.1648 MeV. It has a spin J = (3/2)− and therefore the 
principal quantum number for this nucleus is 2,3, 4n    
as in the case of Lithium. This nucleus has 4protons and 
5 neutrons. The core part has a mass mc = 13.390136 × 
10−24 gm and there is one neutron outside the core. The 
potential energy for this case is given by, 

 
2

2
0

c ng cm m
V r

M r
 


,         (4.13) 

where, 
2
0 0.973006 10 gmM   48 2 .       (4.14) 

The energy spectrum for this nucleus is given by, 
22
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E

M n n

  
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



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In this case the reduced mass is given by, 

241.488704 10 gmc n

c n

m m

m m
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
.      (4.16) 

5) The beryllium-8 nucleus has 4 protons and 4 neu- 
trons and it is very unstable and decays into two he- 
lium-4 nuclei. The binding energy of this nucleus is 56.5 
Mev. We assume here that this nucleus is a bound system 
of two helium-4 nuclei and the total potential energy is 
given by, 

 
2 2

2
0

4g cm m e c
V r

rM r
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 
,     (4.17) 

Where, m  is the exact mass of the   particle and 
is given by,  and the reduced 
mass is half of this. In the above expression the parame- 
ter 

246.6461 10 gmm
 

2
0M  is given by, 

2
0 5.193975 10 gmM   48 2 .     (4.18) 

The energy spectrum in this case is given by, 
22 2
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
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(4.19) 

Here n = 1, 2, 3··· is the principal quantum number. 

5. Morphed Gravitational Potential Energy 
and the MCPE 

In this paper, the MGPE along with the methods of quan- 
tum mechanics is used to estimate all the known experi- 
mental facts of the Deuteron nucleus. The estimated qua- 
drupole moment agrees pretty well with the experiment. 
The Deuteron is supposed to have no excited states. But 
here n = 1 and n = 3 excited states are superposed to ex- 
plain the quadrupole moment. The energy of the super- 
posed state is almost identical to the ground state en- 
ergy of the Deuteron. The parity conservation prohibits n 
= 2 and other excited states. A similar situation may exist 
in the case of other nuclei for which many possible en- 
ergy levels are listed here. Finally, it should be noted that 
the parameter M0 is not a universal constant. It depends 
on the mass of the nucleus. The functional dependence of 
M0 on the interacting masses is unclear as of now. 

There is an experimental fact which is quite often ig- 
nored. There is no object whose mass is zero but carries 
an electric charge. All charged particles have finite mass. 
Why is it necessary to have a finite mass in order to be 
electrically charged? It is this question that is ignored. 
The electrostatic PE between two charges 1 1Q n e  and 

2 1,Q n e  where 1  is the charge on the proton, and n1 
and n2 are integers, which can be positive or negative is 
given by, 

e

 
2

1 2e cn n
V r

r



,           (5.1) 

where 2 1

137
e   is the fine structure constant and it will  

take care of the system of units used. In the above ex- 
pression the charged particle can have any mass includ- 
ing zero. To avoid this, we rewrite Equation (5.1) in the 
following way  

 
1 2

2
2

1 2 1 e
Gm m

e c
e cn n

V r
r

 
 

 





.        (5.2) 

In the above expression, m1 is the mass of the particle 
whose charge is n1e1 and m2 is the mass of the particle 
whose charge is n2e1. The Coulomb potential energy 
given by Equation (5.2) will be zero if either mass is zero. 
Also, it will be zero whenever both the masses are zero. 
In other words, there will not be any Coulomb potential 
energy for zero mass particles. An approximation to Eq- 
uation (5.2) is given by 

2
1 2 1 2 1 2 1 2

21 1
e cn n Gm m Gm m n n

r re c

        




.    (5.3) 

In spite of the appearances, the final expression is 
Coulomb potential energy. This is called the “Morphed 
Coulomb Potential Energy” (MCPE). 
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For an electron, the total potential energy is given by 

 
2 2

2e eGm Gm
V r n

r r
   ,         (5.4) 

where the second term is the MCPE of the electron. The 
above total PE will be zero if n = ±1. By convention, we 
choose n = −1 for the electron. Similarly the morphed 
gravitational PE and the Coulomb PE add up to zero. 

2 2 2
2 2
02

0

0 If 0.2254
0.2254

e
e

e cm e c
M m

rrM
   

 
.  (5.5) 

On a cosmic scale, the Morphed Coulomb PE and the 
gravitational potential energy between two Galaxies are 
given by 

  1 2 1 2 1 2GM M n n GM M
V r

r r
  ,    (5.6) 

where M1 and M2 are the masses of the galaxies whose 
electric charges are n1e1 and n2e1. Here, e1 is the charge 
of the proton and n1 and n2 are integers which can be 
positive or negative. Depending on these integers, the 
force can be repulsive, attractive or zero. Thus the uni- 
verse can expand, contract or be stationary. 

Finally, we point out one observation 

2
2
0

0.007254
0.2254

e pm m
e

M
  ,       (5.7) 

where 2
0M  is given by Equation (2.3). This can be used 

to reexamine the Lamb shift. 
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