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ABSTRACT 

The collapse phenomenon, the parallelism principle and states correlation are used to define a type of a Grover rapid 
search engine. In our approach, the observer’s query and the Grover-unsorted-data are stored in different memories 
where the global state is represented by a tensor product of the associated states. In the proposed formalism, each 
query-state input activates an adjusted operator that implements the unsorted state in an appropriate 2-D Grover repre- 
sentation. It will be shown that once the representation is set, it takes mainly two operations to complete the whole 
query search. This seems to be a very efficient search algorithm. 
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1. Introduction 

Quantum coherence, together with the superposition prin- 
ciple, gives rise to the parallelism concept for which pro- 
cessing a single state is like acting simultaneously on all 
states that participate in the superposition [1,2]. It is also 
known that a key role in speeding up quantum algorithms 
is played by multi-particle entanglement [3]. These entan- 
glement and parallelism concepts enable quantum algo- 
rithms such as Shor’s factoring, which provide options 
for very fast computers [4]. 

In addition, quantum superposition of coherence qubits 
has the advantage of maintaining enormous databases by 
a single state. It is shown that this superposition of qubits 
can be applied to an efficient database-finding algorithm 
and in particular the Grover algorithm that defines a  
possibility for an efficient search engine [5-7]. The ad-
vantage of using quantum memory is shown in [8-10] 
with the definition of a model for which binary pat-  
terns of n-bits are stored in the quantum superposition of 
the appropriate subset of the computational basis of 
n-qbits. 

The grover algorithm divides the Hilbert space into two 
segments: the requested query (denoted by the state k )  

and all the other records 
i k

k i


  
 

 
 . The initial 

state is a maximal unsorted state 
1

1 N

i

i
N 
  while the  

Grover Oracle is a unitary transformation (logical gate)  

that rotates the unsorted state until after a relatively small 
number of iteration  N . The probability of detecting 
the requested query is almost one. Then, a measurement 
terminates a successful search. 

The selection of the 2-D basis k  and k  yields 
that each search has to be associated with an exclusive 
2-D representation such that preparing the appropriate 
representation corresponds with a primary knowledge about 
the searched state. In that sense, the Grover algorithm is 
not a pure search algorithm. Actually, it’s more likely an 
“inverting a function” meaning that if we have a function 

 y f x  that can be evaluated on a quantum computer, 
this algorithm allows us to calculate x  when given  
[11]. If we consider the 

y
k  and k  as vectors, the 

algorithm corresponds with rotating the k  state with 
respect to the k  state. This is an equivalent way to 
represent the constrain of a primary knowledge concerning 
the searched state k  [12]. In order to overcome this 
obstacle, we introduce a parallel space (like another mem- 
ory component) which is also spanned by the records 
states type 

o
i  (the subscript o  stand for the observer 

which determines the searched item) but unlike the regis- 
ter state (which belongs to what we refer to a r-space) 
that is occupied with the unsorted state, this o-space repre- 
sents the observer search selection of a definite single 
record state, say, 

o
k . Thus, eventually, the searched 

item is well defined but only among the observer parallel 
space and definitely not to the other search component. 
We will present a scheme which shows that by correlating  
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the observer state with the unsorted state, the later will be 
represented in the appropriate 2D representation. Once 
the unsorted state is prepared, we introduce a rapid search 
algorithm. 

2. Concepts Formulation 

Searching a record corresponds with introducing the 
search machine with a query. A successful search ends 
with the presentation of the related data. In our approach 
the query is introduced thorough a state while the related 
data output is associated with an operator-eigenvalues 
rather than eigenstates. 

To be more specific, suppose that the search machine 
possesses N states i  where each state presents a pos- 
sible query. The measurement output is associated with 
the projective operator: 

1

ˆ
N

i
i

O i


  i                 (1) 

with the corresponding eigenvalues i . 
A measurement result is the readable content, namely 

the eigenvalues rather than the eigenstates. Therefore, we 
propose that while the query request is introduced through 
a state, the relevant record information is expressed 
through the eigenvalues. 

There are few possibilities to represent a data. It can be 
presented numerically or through a string of symbols. 
Indeed the current mathematical formulation allows us to 
introduce a symbolic eigenvalues-eigensymbols, that is, a 
string of symbols instead of a numeric value as shown in 
the following example: 

Suppose that we search for information concerning 
Albert Einstein from an N number of records. The re- 
quest is then coded into a state E . We can present the 
2D-projective-operator: 

Record
Albertˆ not
Einstein

found
i E

E E E


 
          

 

 i i     (2) 

If E  is the input state then the result will be the  
Albert

Einstein



 


 , that is  

Albertˆ .
Einstein

E E E
 

  
 

          (3) 

All other states of the orthogonal basis, i E , will  

yields the string :  

Record

not

found

 
 
 
 
 

Record
ˆ not

found

E i E i E

 
    
 
 

          (4) 

Note that this mathematical formalism allows us to 
present the output with many ways. For example the 
output can be a link to a relevant computer site. For that 
case the link can be represented by a Links-Operator- 
EinsteinLink  such that: 

Record
ˆ EinsteinLink not

found
i E

E E E


 
    
 
 

 i i     (5) 

If the observer query is E , then we obtain 

ˆ EinsteinLink .E E E            (6) 

Once the machine recognize the E  state it activates 
the link operator EinsteinLink  to present or link to the 
relevant site. For other cases the observer receive the text 
massage “Record not found”. 

3. The Machine Processor 

3.1. The Observer Input 

As in the grover algorithm [6] the register is occupied 
with an  unsorted records state: N

1

1 N

r
i

i
N




  r
             (7) 

where states that are related to the register component are 
denoted by the subscript . r

The Grover search algorithm shrinks the -records 
basis into a 2-D space, spanned by the states 

N
k —the 

state under the search and the state k —a superposi-
tion of all the other states. Consequently each search is 
associated with an exclusive 2-D representation such that 
preparing the appropriate representation corresponds 
with a primary knowledge about the searched state. In 
that sense the Grover algorithm is not a pure search algo- 
rithm. Actually it more accurate to describe the Grover 
algorithm as “inverting a function” meaning that if we 
have a function y = f(x) that can be evaluated on a 
quantum computer, this algorithm allows us to calculate 
x when given y [11].  

If we consider the k  and k  as vectors, the 
algorithm corresponds with rotating the k  state with 
respect to the k  state. This is an equivalent way to 
represent the constrain of a primary knowledge concern- 
ing the searched state k  as nicely described in ref. 
[12]: 

“Each Classical Walk step is almost Target-blind; 
meaning that it does not depend on what the searched  
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target is, except in deciding whether to stop or go on with 
the search. It’s as if we were moving from some original 
binary code 0000 to the searched target in a dark room, 
taking small blind steps, until we hit the target. Once we 
hit the target, we recognize it as such and stop. 

Now note that each Grover step is NOT an almost 
Target-blind; in fact, each Grover step is a rotation by a 
small angle   in the plane that contains the unsorted 
state vector   and the target state k , where   
depends on the angle between   and k . So the 
Grover steps are not almost Target-blind. Far from it.” 

As mentioned before, transforming the algorithm into 
a real search engine corresponds with introducing a pa- 
rallel space, that is, an additional memory component. 
Likewise the records space it is spanned by the records 
states type 

o
i  (the subscript o  stand for the observer 

which determine the searched item) but unlike the r- 
space, this o-space represents the observer search selec- 
tion of a definite single record state 

o
. Thus, even- 

tually, the searched item is well know but only in the 
observer parallel space and definitely not by the other 
search component. 

k

Suppose that by searching a -record, the observer 
defines the state 

k

o
. The searching machine first step 

is to correlate between the observer state 
k

o
k  with the 

processor unsorted state 
r

  yielding: 

,
r o

k                 (8) 

with 
r

  being the unsorted state of Equation (7). 
Assuming that the machine processor is fed with the 

observer selection. In response the machine processor 
exhibit the register state of Equation (7) in the associ- 
ated representation:  

1 1

1

1

r r

r r
i k

N
k k

NN

k i
N






  

 



r

      (9) 

We refer this representation as the k-basis-representa- 
tion. The question we address is how does the observer 

o
-selection can be followed by the r-space such that 

the unsorted state 
k

r
  will be represented by the - 

basis? 
k

Suppose that ,
ˆ

i rM  is the operator that operates within 
the r -space and can be coupled to any observer selec- 
tion 

o
. Clearly there are  operators of the kind. 

The global processor task is to associate each operator 
with its compatible -state. This operation is activated 
by the following -operator: 

i N

o
̂

,
ˆ ˆ i ro

i

i M i

Once the observer select his query, say, the state 
o

 
and after the states are correlated as shown in Equation 
(8), the processor operation provides us with the output:  

k

,
ˆ ˆ ,k rr o r o

k M k          (11) 

meaning that among all other possibilities the r-processor 
is now operating within the -representation only. We 
note that 

k

,
ˆ

k rM  can be regarded as an “eigenoperator” 
[13,14]. 

3.2. The  Operator ˆ
,k rM

A simple measurement of the record k can be represented 
with the following projective operator:  

,

Relevant notˆ
information foundr k r r r r

M k k k k
   

    
   

  (12) 

Applying the operator ,
ˆ

r kM  on the unsorted state 

r
  (see Equation (9)) and considering this operation 

by means of conducting a macroscopic measurement, we  

will probably obtain a  output and conse- 
not

found



 




quently the remaining state will be the k -state. 
Therefore in order to improve the odds of detecting the 
required k  associated data, we apply the Pauli gate 
that switches between the 

r
 k

r
k -states while leav- 

ing the “eigensymbols” unchanged. 
This improved operator is: 

1
, , ,

ˆ ˆ ˆ ˆ
r k r k r k r k,M P M P               (13) 

where the Pauli gate is  

,r̂ k r r r
P k k k k   

r
         (14) 

This yields:  

,

Relevant notˆ
information foundr k r r r r

M k k k k
   

      
   

 (15) 

This eigenstates switching causes the high probability 
state 

r
k  to possess the required eigensymbol data  

Relevant

information



 


  with the high probability 

1N

N


. Thus,  

not only we defined a pure searching algorithm by de-
fining the observer query separately from the search 
engine, we also introduced a very rapid algorithm which 
composed mainly of two steps: The Pauli gate and a 
macroscopic measurement. 

4. Summary 

We summarize this paper with the following flowchart 
that shows our proposed algorithm: o

             (10) 
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