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ABSTRACT 

This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order 

   , , , , , in ,zz z zz zu F z u u u G z u u D   (0.1) and the boundary condition    1 22 2 on
u

c z u c z



, 


  (0.2) in a 

multiply connected infinite domain  with the boundary D  . The above boundary value problem is called Problem G. 
Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition 
(0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some 
solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of 
solutions and solvability for a modified problem. Then we present results on solvability of Problem G. 
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1. Formulation of Elliptic Equations and  
Boundary Value Problems 

Let  be an -connected domain which in- 
cludes the infinite point and has the boundary  

D  1N  

0

N

jj
    in , where   2 0 1C    .  

Without loss of generality, we assume that D  is a 
circular domain in 1z  , where the boundary consists 

of  circles 1N   0 1 1N z     , 

 , 1, ,j j jz z r j N       and .  Note  z  D

that this article uses the same notations as in references 
[1-8]. We consider the nonlinear uniformly elliptic 
equation of second order  

  
 
  
 

1 2 3

, , , , , ,

Re ,

, , , , , , ,

, , , 1, 2,3.

zz z zz z

zz z

z z

j j z

u F z u u u G z u u

F Qu A u A u A

G G z u u Q Q z u u u

A A z u u j

 
    
  
  



zz

   (1.1) 

This is the complex form of the nonlinear real equation  

 , , , , , , , 0x y xx xy yyx y u u u u u u         (1.2) 

with certain conditions (see [3]). We suppose that the 
Equation (1.1) satisfies Condition C, as described below.  

Condition C 1)     , , , , , , 1, 2,3jQ z u w U A z u w j 
z D

 
are measurable in   for all continuous functions 
   ,u z w z  in D  and all measurable functions  

   
0 ,2 ,pU z L D  and satisfy  

   
   

,2 1 0 ,2 2 0

,2 3 1 2

, , , , , , , ,

, , , , , , 0 in ,

p p

p

L A z u w D k L A z u w D k

L A z u w D k A z u w D

       
    

 

(1.3) 

in which    0 0 0 1, 2 , , , 1p p p p k k     are non-ne- 
gative constants. 

2) The above functions are continuous in 
,u w   , for almost every  and  ,z D U 

 1, 2,3j 0, 0jQ A   for  .z D
3) The Equation (1.1) satisfies the uniform ellipticity 

condition  

   1 2 0 1, , , , , , ,2F z u w U F z u w U q U U    (1.4) 

for almost every point ,z D  any functions 
     ,u z w z C D  and  where 1 2, ,U U  0 1q   
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is a non-negative constant. 
4) The function  possesses the form   , ,G z u w

  1 2, , in ,G z u w B w B u D
    (1.5) 

where  are continuous functions in    ,u z w z D , 
 ,2, p jL B  

k
0 00 , , 1, 2,2D k j p p          for a 

positive constant . 0

According to [7], we introduce the general boundary 
value problem for the Equation (1.1) in D  as follows.  

Problem G Find a continuously differentiable solution 
 of the second order Equation (1.1) in  u z D  

satisfying the boundary conditions  

   

     

1 2

1 2

2 2 ,

. . Re , .z

u
c z u c z

i e z u c z u c z z






 


      

 (1.6) 

Here   is a given unit vector at the point ,z  and 
     cos , cos , ,z x i    y   z  and  are real 

functions. We assume 
 z

1,c  and  satisfy the con- 
ditions  

2c

     0 1 0 2, , , , ,C k C c k C c         2 ,k



 (1.7) 

and  

   1 cos , 0, ,c z n z   

in which   0 2  are non-negative con- 
stant, and  is the unit outer normal at 

1 2 1 , , ,k k   
n z . If 

 then we assu- 
me that  

   1cos , 0 on ,1 ,jz j N     0,n c

   * * *
2 d 0, 1 , ,1

j
j j jc z z u a b b k j N


    2 ,  (1.8) 

in which *
ja  is a point on j

  ,N

 and  are 
real constants. There is no harm in assuming that 

 on 

* 1, ,jb j N 

 ,n



   1cos , 0n c z  
*  

0,


01 0N N   and cos  1 z

.

c  

do not both vanish identically on 
0

**
1N N     

We can see that the above boundary conditions include 
some irregular oblique derivative boundary conditions. If 

 on , then Problem G is the regular 
oblique derivative problem (Problem III). If 

 and 1  on 

 cos , 0n 

 cos , 0n 



c 0  , then Problem G is the 
first boundary value problem, i.e., the Dirichlet boundary 
value problem (Problem D), in which the boundary 
condition is  

   
   *

* * *
21

d , 1 , 1, ,
j

z

j j ja

u z r z

c z s b r a b j N



     1.



 (1.9) 

One problem regarding the well posed-ness of 
Problem G for (1.1) can be formulated as follows:  

Problem H Find a system of continuous functions 
 of the equation     ,u z w z

   
 
  
 

1 2 3

, , , , , ,

Re ,

, , , , , , ,

, , , 1, 2,3, ,

z z

z

z

j j z

w F z u w w G z u w

F Qw A w A u A

G G z u w Q Q z u w w 
A A z u w j w u

 
    
  
   

 (1.10) 

satisfying the modified boundary conditions  

     

       

1 2

1 2

2 2 ,

. . Re , ,z

u
c z u c z h z

i e z u c z u c z h z z






    
       

 (1.11) 

and the point conditions:  

   0 0 01 , 0,1, , , , 1, ,j j ju a b j m a a a j m      .

(1.12) 

An explanation of the above conditions is given as 
follows. The boundary   can be divided into two parts: 

    1cos , 0, 0n c z     and 

    cos , 0, 0 ,n c z   1  such that 

 1 1

, ,

, , , , , ,m lE a a a a

              

  

 
 


 every component of 

  and   includes its initial point, but does not in- 
clude the terminal point, and there is at least one point on 
each component of  so that   ,  cos , 0.n   The 
points  m

ja 
1, , ja j  and j  possess the 

following property. 
 1, , la j 

  and j , when the 
direction of 

a  
  at ,j ja a  is the same as the direction of 

.  ja   and ja   , when the direction of   at 
,j ja a  is opposite to the direction of . And  (cos )n,  

changes the sign once on the two components of ,    
with the end point j  or j . And a a  0,1,b j  ,j  
in (1.12) are real constants satisfying the condition: 

m

3j  herein 3  is a non-negative constant. More- 
over, the undetermined function  in (1.11) can be 
written as  

,k kb 
h z 

     , , 0,1,j j jh z h z z j l    , .  (1.13) 

In (1.13)  * 0,1, ,j j j      l  are non-degen- 
erate, multiply disjointed arcs, each of which consists of 
inner points of  0,1, ,j j l   , such that 

   0, 0z cos , n    on 
  0 0 0, , , .j l a E 1,j        In addition, 
 , l

 j z
j

0,1,h j j  are unknown real constants to be 
determined appropriately, and  is a positive 
function on   and   0j z   on j  and 

 C z 0j   , , 0,1, , ,k j l     in which 

 1 2 1    and 0k  are non-negative constants. It is 
not difficult to see that the index of Problem H is given 
by  

 1
arg 1 .

2 2

m l
K z N


    


 (1.14) 
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If  on , then 
 In this case, Problem H for (1.1) 

is called Problem O or Problem IV, which includes the 
Dirichlet problem, the Neumann problem and the regular 
oblique derivative problem as its special cases. We note 
that except the case where  and 

   1cos , 0, 0n c z  
, , .E      

cos



 ,n

 

0   1 0c z   
on , the conditions (1.12) and (1.13) can be replaced 
by  



 
    0

1 , 0,1, , ,

, , 1,

j j

j j

u a b j m

h z h z z j l

 

  



, .
  (1.15) 

with  

3 , 0,1, ,jb k j m   ,    (1.16) 

in which 3  is a non-negative constant. Also note that 
[4,7] discuss the corresponding problem for the equation 
(1.1) with  in the bounded domains. 

k

 , , 0zG z u u 

2. A Priori Estimates of Solutions of  
Boundary Value Problems  

We first give a priori estimates of solutions of Problem H.  
Theorem 2.1 Suppose the second order nonlinear 

Equation (1.10) satisfies Condition C, and   in (1.3), 
(1.7) is small enough. Then any solution 

     , , zu z w z u z u    
 , , 0G z u w 

  of Problem H for (1.10) with 
 satisfies the estimates  

   
0

1
,2 1, , ,p zz zzS u C u z D L u u D M            (2.1) 

   2 * 2 1 2 3 ,S u M k M k k k     

in which  0min ,1 2 ,p     02 ,p p 
 1 1 0 0, , , , , ,M M q p k K D
 2 2 0 0 0, , , , ,

   1 2 3, ,k k k k ,
.M M q p k K D   

Proof First of all, we prove that the solution  u z  of 
Problem H satisfies the estimate  

   1
1 3 3 0 0, , , , , ,S C u z D M M q p k K D     .  

Suppose that the estimate (2.3) is not true. Then there 
e x i s t  s e q u e n c e s  o f  c o e f f i c i e n t s 
                 *

1 2 3 1 2, , , , , , , ,n n n n
n n n jn jnQ A A A c c b b

*
1 2 3 1 2, , , , , , , ,

 o f 
(1.10), (1.11), (1.12) and (1.15) satisfying the same 
conditions of j jQ A A A c c b b
  ,nQ  1 ,nA  2 ,nA  3

n
, such that 

   A  in  weakly converge  D
0 0 0 0, , ,Q A A Ato  respectively, and 1 2 3

       *
1 2, , ,n jnc c b , n n  jnb

*, ,
 on  uniformly 

converge to 0 10 20 0 0


, , j jb bc c  respectively, and the 

corresponding boundary value problems  

1 2 3 2Re , 0 in ,n n n n n
zz zz zu Q u A u A u A A       D  (2.4) 

   

1 2

1

2 2 2 ,

cos , 0 on , d 0,
j

n n n
n

n n n

u
c u c h

c z n c s







  



   

 
 

* *
01 , 1, , ,

1 , 0,1, , , 1,2,

j jn

j jn

u a b j N

u a b j m n

 

  




   (2.6) 

have the continuously differentiable solutions 
  1,2,nu z n    with the property that 

1 ,n nH C u D   
  as  There is no harm in  .n 

assuming that  Denote 1, 1, 2,nH n  
, 1, 2,n  n n nU u H   It is clear that the function 

 nw z U nz  is a solution of the following Rie- 
mann-Hilbert boundary value problem  

1 1Re , in ,n n n n n n
nz nz n nw Q w A w A A A u A       3 D  

(2.7) 

 
 

* *
01 , 1, , ,

1 , 0,1, , ,

n j jn

n j jn

u a b j N

u a b j m n

 

  



 1,2,
 (2.8) 

where the index of  zn  is  1 2K N m l    ,  
and   , 1nC w z D    showing that  n  on w z D  is 
bounded. According to the method in the proof of 
Theorem 4.7, Chapter I [4], we can obtain that  nw z  
satisfies the estimate  

 
0 ,2 4, ,n n p nz nzL w C w D L w w D M           ,  (2.9) 

in which  4 4 0 0, , , , , ,M M q p k K D  and then  

     

2 
 (2.5) 

* 021
2Re d

j

z n
n na

w z
U z z u z H

z
     

satisfies  

 
0

1
,2 5, ,n n p nzz nzzS U C U D L U U D M           ,  

(2.10) 

where  5 5 0 0, , , , , .M M q p k K D  Hence from 

  nU z  and  nzU , we can choose the subsequences  

  knU z  and  kn zU , which uniformly converge to  

 0  and 0U z zU  in D  respectively, such that  0  
is a solution of the following boundary value problem  

U z

0 0 0 0
1 2 2Re 0, 0 in ,zz zz zU Q U A U A U A       D  (2.11) 

   10 0 10 0
0

2 2 , cos , 0 on ,
U

c u h c z n



   


  (2.12) 

   *
01 0, 1, , , 1 0, 0,1, , .j jU a j N U a j m      

(2.13) 

By the uniqueness of solutions of Problem H (see 
Theorem 2.3 below), we see that   0U z   on D . 
However from  1 , 1,C U z D  n   it can be derived that 

 1
0 ., 1C U z D     This contradiction proves that (2.3) 

is true. Afterwards, using the method of deriving (2.9) 
from 1 , 1,C U D n    we can obtain the estimate (2.1). 
The estimate (2.2) can be concluded from (2.1). 

Theorem 2.2 Let the Equation (1.1) satisfy Condition 
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dary conditions:  C and   in (1.3), (1.7) be a sufficiently small positive 
constant. Then any solution    ,w z u z    of Problem 
H for (1.10) satisfies the estimates  

  1 2 3Re , ,z zw Qw A w A u A G z     D  (2.16) 

       1 2Re , ,z w z c u c z h z z         (2.17)     6 *, ,C w z D C u z D M k         ,  (2.14) 

 
 

* *
01 , 1, , ,

1 , 0,1, , , 1,2,

j jn

j jn

u a b j N

u a b j m n

 

  




 (2.18) 0 0,2 ,2 7 *, ,p z z p zL w w D L u D M k         ,  (2.15) 

where 0, p  are as stated in Theorem 2.1, 
   0 0 0, , , , , , 6,7,M M p k K D j j j q

   * 1 2 3 0 , , k k k k k C w D C u D
 

           .   

By using the same method as in the proof of Theorem 
2.1, we can obtain the estimates (2.14) and (2.15). 

Now we discuss the uniqueness of solutions of 
Problem H for the nonlinear elliptic Equation (1.1) with 
 , , 0G z u w  . For this, we need to consider the follo- 

wing condition 
Proof It is easy to see that    ,w z u z    of Problem 

H for (1.10) satisfies the following equation and boun- 
 

       
 

0

1 1 2 2 1 1 2 2 1 2

1 2 ,2 0 0

, , , , , , Re ,

, , , , 1,2, , , 2 ,

z z z

j j p j

F z u u U F z u u U A u u A u u

A A z u u U j L A D k p p

      


       

 

  


         (2.19) 

 
for any continuously differentiable functions 

   1 , 1,ju z C D j  2  and any measurable function  

   
0 ,2 ,pU z L D  where  0min ,1 2 ,p     

H for (1.10). By the above conditions, we see that 
     1 2u z u z u z   is a solution of the following 

boundary value problem Problem  

1 2Re 0, ,zz zz zu Qu A u A u z      
  2p p p   , k0 0  0  are constants as stated in Section 1. 

We can prove the uniqueness of solutions of Problem H 
for (1.1).  

D  (2.20) 

     12 2 ,
u

c z u z H z z



, 


  (2.21) 
Theorem 2.3 Let the second order nonlinear Equation 

(1.1) satisfy Condition C and (2.19) with 2  in . 
Then the solution of Problem H for (1.10) with 

0A  D

 , , 0zG z u u   is unique.  

   *
01 0, 1, , , 1 0, 0,1, , ,j ju a j N u a h m      

(2.22) 

Proof Let  be two solutions of Problem    1 2,u z u z with  
 

     
     
       

   

0

1 2 1 1 1 1 1 2

1 1 2 1 1 2 1 2 2

1 2 2 2 2 2
1 2

1 22

1 2

0 ,2 2

Re , , , , , , ,

Re , , , , , , ,

, , , , , ,
for ,

0 for

1, , , 1,2, 0 in

z zz z zzzz

z zz z zzz

z zz z zz

p j

Q u u F z u u u F z u u u

A u u F z u u u F z u u u

F z u u u F z u u u
u z u z

u uA

u z u z z D

Q q L A D j A

    
    
 

  
  

       







   ,D













, ,



 

 
   , ,G G z u z w z     is coninuous and bounded with  where 0 0 1  are non-negative constants. Accor- 

ding to the proof of Theorem 2.6, Chapter I, [4], and 
using the extremum principle of solutions for (2.20) (see 
Chapter 3, [3]), we can prove that  in , and 
then  in . 

, ,q p k

  1u z u
  0u z  D

2 z D

    
   

,2 ,2 1

,2 2

, , , ,

, ,

p p

p

L G z u z w z D L B D

C w D L B D C u D, ,
 

      

         

    (3.1) 

3. Solvability of Boundary Value Problems 

We first prove a lemma. 
Lemma 3.1. If  satisfies the condition 

stated in Condition  then the nonlinear mapping :  
 , ,G z u w

,C T

     ,2pC D C D L D   defined by 

where 0 2.p p    
Proof In order to prove that the mapping T :  

     ,2pC D C D L D   defined by 

   , ,G G z u z w z   

     

 is continuous, we choose any 
sequence of functions 

    , 0,1, 2,n nu z C D n  , ,n nw z u z w z    
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such that 0 0, ,n nC w w D C u u D          0



 as 
 Similarly to Lemma 2.2.1 [5], we can prove that 

 possesses the property 
that  

.n 
C G    0 0, , , ,n n nz u w G z u w 

,2 , 0 asp nL C D n     .   (3.2) 

And the inequality (3.1) is obviously true. 
Theorem 3.2. Let the complex Equation (1.1) satisfy 

Condition C, and the positive constant   in (1.3) and 
(1.7) be small enough. 

1) When 0 , 1

     1
,2, pw z u z W D

0
 with the constant 

 0 02p p p   as stated before. 
2) When  min ,  1,  Problem H for (1.10) has a 

solution    ,w z u z   , where    
0

1
,2 ,pw z W D  pro- 

vided that  

 
08 ,2 3 2

0

, ,
m

p j
j

M L A D C c b


        (3.3) 

is sufficiently small.  
Proof 1) In this case, the algebraic equation for t  

becomes  
,    Problem H for the Equation 

(1.10) has a solution    ,u z   ,w z  where 
 

 9 ,2 3 ,2 1 ,2 2 2
0

, , , ,
m

p p p j
j

,M L A D L B D t L B D t L c b t 




 
               

 
          (3.4) 

 
with 9 6 7M M M  , where 6 7,M M

0
 are constants as 

stated in (2.14) and (2.15). Because , 1,  
0.

 Equa- 
tion (3.4) has a unique solution 10  Now we 
introduce a bounded, closed and convex subset   

t M
*B

of the Banach space     ,C D C D



 whose elements  

are of the form  satisfying the condition     ,w z u z
          10, , , , .w z u z C D C w z D C u z D M          

   (3.5) 

We choose a pair of functions     *,w z u z B     and 
substitute it into the appropriate positions of 
  , , , ,z , ,F z u w w G z u w  in (1.10) and the boundary 

condition (1.11) to obtain  

  , , , , , , , ,z zw F z u w u w w G z u w        (3.6) 

       1 2Re , ,z w z c z u c z z         (3.7) 

where 

 
  

   
1

2 3

, , , , ,

Re , , , , ,

, , , , .

z

z z

F z u w u w w

Q z u w w w A z u w w

A z u w u A z u w

    
 

  

   

   

 

In accordance with the method in the proof of The- 
orem 1.2.5 [5], we can prove that the boundary value 
problem (3.6), (3.7) and (1.15) has a unique solution  

   ,w z u z   . Denote by      , ,w u T w z u z      the  

mapping from    ,w z u z     to  Noting 
that  

   ,w z u z .

 ,2 2 10 0 1 10 0, , ,pL A u D M k C c u M k        ,  

provided that the positive number   is sufficiently 
small, and noting that the coefficients of complex Equa- 
tion (3.6) satisfy the same conditions as in Condition C, 
from Theorem 2.2, we can obtain  

 

 

   
0 0,2 ,2 9 ,2 3 2 ,2

0

9 8 ,2 1 ,2 2 9 8 ,2 1 10 ,2 2 10 10

, , , , , , ,

, , , , , ,

m

p z z p z p j p
j

p p p p .

w D L w w D C u D L u D M L A D C c b L G DC

M M L B D C w D L B D C u D M M L B D M L B D M M



   



 
                               

 

                            



 
 

(3.8) 

 
This shows that T  maps  onto a compact subset 

in  Next, we verify that 

*B
.*B T  in  is a continuous 

operator. In fact, we arbitrarily select a sequence 
 in  such that  

*B

  ,nw z  nu z   *B ,

   0 0, , 0 asn n  .w D C u u D n       C w  (3.9) 

By Lemma 3.1, we can see that  

   
 

,2 0 0, , , , ,

0 1, 2,3 as .

p j n n jL A z u w A z u w D

j n

  
  

   
      (3.10) 

Moreover, from 

       0 0 0 0, , , , ,n n n nw u T w u w u T w u     ,  it is clear that  

 0n n 0,w w u u   is a solution of Problem H for the  

following equation:  

   
 
   

0

0 0 0 0 0

0 0

, , , , ,

, , , , ,

, , , , in ,

n n n n n nzz

z

n n

w w F z u w u w w

F z u w u w w

G z u w G z u w D

 



 

  
  

   
 (3.11) 

  
    

0

1 0

Re

on ,

n

n

z w w

c z u u h z

  
     

    (3.12) 
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* *
0

0

1 1 0, 1, ,

1 1 0, 0,1, , .

n j j

n j j

u a u a j N

u a u a j m

  

  





0 ,
 (3.13) 

In accordance with the method in proof of Theorem 
2.2, we can obtain the estimate 

 

   

 
   

   
       

0

0

0 ,2 0 0

0 ,2 0

11 ,2 2 2 0 0 0

,2 3 3 0 0

,2 0 0 1 0

, ,

, ,

, , , , ,

, , , , ,

, , , , , , ,

n p n nz z

n p n z

p n n n

p n n

p n n n

C w w D L w w w w D

C u u D L u u D

M L A z u w u A z u w u D

L A z u w A z u w D

L G z u w G z u w D C c z u u





         
        

   

   

         

     

   

     

        (3.14) 

 
in which  11 11 0 0 0, , , , , .M M q p k K D  From (3.9), 
(3.10) and the above estimate, we obtain 

0 0, , 0 .n n n     as  On the 
basis of the Schauder fixed-point theorem, there exists a 
function 

C w w D C u u D      

         , ,w z u z w z u z C D  
     , , .z T w z u z      

  such that  

 w z u  And from Theorem 2.2,  

it is easy to see that      1
,2, pw z u z W D

0 , 1.

0
 and 

  is a solution of Problem H for the 
Equation (1.10) with the condition 

,
   ,w z u z

    
In addition, using a method similar to the above, we 

see that if   1 2, , ReG z u w B w B u
   in , where D

,2 00 1, , , 1,p jL B D k j         2,  then the above 
solvability result still holds. 

2) Secondly, we discuss the case, where 
 min , 1.  

t M
 In this case, (3.4) has the solution 

10  provided that 8M  in (3.3) is small enough. We 
consider a closed and convex subset  in the Banach 
space 

*B
    ,C D C D  i.e.,  

     * 10, , , , B w z u z C D C w D C u D M          .  

Applying a similar method as before, we can verify 
that there exists a solution 

0 0
 of Problem H for 

(1.10) with the condition 
       1 1

,2 ,2, p pw z u z W D W D   
 min ,  

 
1.  

Moreover, if 1 2, , ReG z u w B w B u
   in , 

where 
D

1 ,    ,2 0, , 1, 2,p j   then 
under the same condition, we can derive the above 
solvability result by a similar method. 

L B D k j     

From the above theorem, the next result can be 
derived. 

Theorem 3.3 Under the same conditions as in The- 
orem , Problem G has 3.2 1l

 u z
 solvability conditions, 

and the general solution  includes  arbitrary 
real constants.  

1m

Proof Let the solution    ,w z u z

  0, z 
l

  of Problem  
for (1.10) be substituted into the boundary condition 
(1.11). If the function , i.e. 

 then we have 

H

h z
, ,0, , 0,1,jh z j     zw z u  in 

 and the function  is just a solution of Problem 

G for (1.1). Hence the total number  of above 
equalities is just the number of solvability conditions of 
Problem . 

D u z

1l

G
Also note that the real constants  0,1, ,jb j m  in 

(1.12) and (1.15) are arbitrarily chosen. This shows that 
the general solution of Problem G for (1.1) includes the 

1m  arbitrary real constants as stated in the theorem. 
Note: The opinions expressed herein are those of the 

authors and do not necessarily represent those of the 
Uniformed Services University of the Health Sciences 
and the Department of Defense. 
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