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ABSTRACT 

The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly 
totally quasi- -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems 

under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of 
equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics 
and Computation, 218, 6489-6497). 
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1. Introduction 

Throughout this paper, we denote the strong convergence 
and weak convergence of the sequence  nx  by 

nx x  and nx x , respectively. We denote by N and 
R the sets of positive integers and real numbers, respec- 
tively. Let  be a nonempty closed subset of a real 
Banach space 

D
X . A mapping  is said to be 

nonexpansive if 
T D D 

Tx Ty x  y , for all x y D  . 
Let  and  denote the family of non- 
empty subsets and nonempty bounded closed subsets of 

, respectively. 

 N D

D

 CB D

Let X  be a real Banach space with dual X  . We de- 
note by J  the normalized duality mapping from X  to 

 which is defined by  2X 

   22 *: ,J x x X x x x x      , where x X   

and    denotes the generalized duality pairing. The 
Hausdorff metric on  is defined by   CB D

    
1 2

1 2 2 1max sup , , sup ,
x A y A

H A A d x A d y A
 

 
   

 
, for  

 1 2A A CB D  , where   2

 T D CB D   if  p T p


. The set of fixed points 
of  is represented by T F T . In the sequel, denote 
   1S X x X x    . A Banach space X  is said to  

be strictly convex if 1
2

x y
 for all  x y S X    

and x y . A Banach space is said to be uniformly con- 
vex if lim 0n n nx y   for any two sequences  

     ,n nx y S X  and lim 0
2

n n
n

x y



 . The norm 

of Banach space X  is said to be Gâteaux differentiable 
if for each  x y S X  , the limit 

0
lim
t

x ty x

t

 
              (1.1) 

infd x A x y y A     2 . 
The multi-valued mapping  is called 
nonexpansive if 

 T D CB D 
 H Tx Ty x y    for all x y D  . 

An element  is called a fixed point of  pD

exists. In this case, X  is said to be smooth. The norm 
of Banach space X  is said to be Fréchet differentiable, 
if for each  x S X , the limit (1.1) is attained uni- 
formly for  y S x  and the norm is uniformly Fréchet 
differentiable if the limit (1.1) is attained uniformly for 

 x y S  X . In this case, X  is said to be uniformly 
smooth. 

The following basic properties for Banach space X and 
for the normalized duality mapping J  can be found in 
Cioranescu [1]. 

(1)  X X resp   is uniformly convex if and only if 
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 X X resp    is uniformly smooth. 
(2) If X  is smooth, then J  is single-valued and 

norm-to-weak* continuous. 
(3) If X  is reflexive, then J  is onto. 
(4) If X  is strictly convex, then  for all Jx Jy  

x y X  . 
(5) If X  has a Fréchet differentiable norm, then J  

is norm-to-norm continuous.  
(6) If X  is uniformly smooth, then J  is uniformly 

norm-to-norm continuous on each bounded subset of 
X . 

(7) Each uniformly convex Banach space X  has the 
Kadec-Klee property, i.e., for any sequence  nx X , 
if nx x X  and nx x , then nx x  X . 

In 1953, Mann [2] introduced the following iterative 
sequence  nx , 

 1 1n n n n nx x T     x   

where the initial guess 1x D  is arbitrary and  n  is 
a real sequence in  0 1 . It is known that under appro- 
priate settings the sequence  nx  converges weakly to a 
fixed point of T . However, even in a Hilbert space, 
Mann iteration may fail to converge strongly [3]. Some 
attempts to construct iteration method guaranteeing the 
strong convergence have been made. For example, Hal- 
pern [4] proposed the following so-called Halpern itera- 
tion, 

 1 1n n n nx u T     x   

where 1  are arbitrary given and u x D  n  is a real 
sequence in  0 1 . Another approach was proposed by 
Nakajo and Takahashi [5]. They generated a sequence as 
follows, 

 
 


 
1

1 1

is arbitrary

1

0

1 2
n n

n n n n

n n n

n n n

C Q

x X

y u Tx

C z D y z x z

Q z D x z x x

x P x n

 



 

  

     

      

    

1

n













     (1.2) 

where n  is a real sequence in  0 1  and KP  de- 
notes the metric projection from a Hilbert space H onto a 
closed convex subset K of H. It should be noted here that 
the iteration above works only in Hilbert space setting. 
To extend this iteration to a Banach space, the concept of 
relatively nonexpansive mappings and quasi- -nonex- 
pansive mappings are introduced by Aoyama et al. [6], 
Chang et al. [7,8], Chidume et al. [9], Matsushita et al. 
[10-12], Qin et al. [13], Song et al. [14], Wang et al. [15] 
and others. 

Inspired by the work of Matsushita and Takahashi, in 
this paper, we introduce modifying Halpern-Mann itera- 
tions sequence for finding a fixed point of a countable 

family of uniformly totally quasi- -asymptotically non- 
expansive multi-valued mappings in reflexive Banach 
spaces  1 2 3,iT D D i       and some strong con- 
vergence theorems are proved. The results presented in 
the paper improve and extend the corresponding results 
in [7]. 

2. Preliminaries 

In the sequel, we assume that X  is a smooth, strictly 
convex, and reflexive Banach space and  is a nonemp- 
ty closed convex subset of 

D
X . In the sequel, we always 

use X X R     to denote the Lyapunov bifunction 
defined by 

  2 2
2 ,x y x x Jy y x y X        .   (2.1) 

It is obvious from the definition of the function   
that 

    2 2
x y x y x y            (2.2) 

     
2

y x y z z x

z y Jx Jz x y z X

      

        
        (2.3) 

and 

   
    

1 1

1 
x J Jy Jz

x y x

  

  

  

z    
          (2.4) 

for all  0 1    and x y z X   . 
Following Alber [16], the generalized projection 

D X D    is defined by 

   arg inf , , .D x y D y x x X      

Many problems in nonlinear analysis can be reformu- 
lated as a problem of finding a fixed point of a nonexpan- 
sive mapping. 

Remark 2.1 (see [17]) Let D  be the generalized 
projection from a smooth, reflexive and strictly convex 
Banach space X  onto a nonempty closed convex subset 

 of D X , then D  is a closed and quasi- -nonex- 
pansive from X  onto . D

Lemma 2.1 (see [16]) Let X  be a smooth, strictly 
convex and reflexive Banach space and  be a non- 
empty closed convex subset of 

D
X . Then the following 

conclusions hold, 
(a)   0x y    if and only if x y . 
(b)      D Dx y y x y x y  y  D         . 
(c) If x X  and z D , then  if and only 

if 
Dz x 

0z y Jx Jz y D    .   
Lemma 2.2 (see [7]) Let X  be a real uniformly 

smooth and strictly convex Banach space with Kadec- 
Klee property, and  be a nonempty closed convex 
subset of 

D
X . Let  nx  and  ny  be two sequences in 

 such that D nx p  and  where   0n nx y     
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is the function defined by (1.2), then . n

Definition 2.1 A point  is said to be an asymp- 
totic fixed point of multi-valued mapping  

y p
p D

 T D CB D  , if there exists a sequence  nx D  
such that nx x X  and    0n n . Denote 
the set of all asymptotic fixed points of  by 

d x T x
T  F̂ T . 

Definition 2.2 
(1) A multi-valued mapping  is said 

to be relatively nonexpansive, if ,  
 T D CB D 

 F T  
   F̂ T F T

 p F T z 
, and    p z  


 p x x D   

T x . 
(2) A multi-valued mapping  is said 

to be closed, if for any sequence 
 T D CB D 

 nx D  with 

nx x X   and    0nd y T x , then  
  d y T x  0 . 

Remark 2.2 If H  is a real Hilbert space, then 
  2
x y x y     and D  is the metric project  ion

DP   of H  on o t D . 
Next, We present an example of relatively nonexpan- 

sive multi-valued mapping. 
Example 2.1 (see [18]) Let X  be a smooth, strictly 

convex and reflexive Banach space,  be a nonempty 
closed and convex subset of 

D
X  and f D D R    be 

a bifunction satisfying the conditions: 
(A1)   0f x x x D   

    0
; 

(A2) f x y f y x    x y D   ; 

(A3) for each x y z D   , 

    0lim 1t f tz t x y f x y      ; 

(A4) for each given x D , the function  
 y f x y  is convex and lower semicontinuous. 

The “so-called” equilibrium problem for f is to find a 
x D   such that   0f x y y D   

 EP f
D

. The set of its 
solutions is denoted by . 

Let  and define a multi-valued mapping 
 as follows,  

0r x  
 N D rT D

 

  1
0

rT x

z D f z y y z Jz Jx y D
r

x D

            
 

  

  (2.5) 

then (1) r  is single-valued, and so  T  rz T x ; (2) 

r  is a relatively nonexpansive mapping, therefore, it is 
a closed quasi-
T

 -nonexpansive mapping; (3)  
   rF T EP f . 
Definition 2.3 
(1) A multi-valued mapping  is said 

to be quasi-
 T D CB D 

 -nonexpansive, if , and 
. 

 F T  
 F T z Tx 

 T D CB D 
  p z p x x D p       
(2) A multi-valued mapping  is said to 

be quasi- -asymptotically nonexpansive, if  F T  
1 1n nk k  

 
and there exists a real sequence  
such that 

 

   
 
n n

n
n

p z k p x x D

p F T z T x

     

   


       (2.6) 

(3) A multi-valued mapping  is said 
to be totally quasi-

 T D CB D 
 -asymptotically nonexpansive, if 

 F T    and there exist nonnegative real sequences 
   n nv  , with 0vn n   (as ) and a strictly 
increasing continuous function  with  

n 
R R   

 0 0   such that 

     
 1 .

n n

n
n

p z p x v p x n

x D n p F T z T x

           
       


   (2.7) 

Remark 2.3 From the definitions, it is obvious that a 
relatively nonexpansive multi-valued mapping is a quasi- 
 -nonexpansive multi-valued mapping, and a quasi- - 
nonexpansive multi-valued mapping is a quasi-  -as- 
ymptotically nonexpansive multi-valued mapping, and a 
quasi- -asymptotically nonexpansive multi-valued map- 
ping is a total quasi- -asymptotically nonexpansive mul- 
ti-valued mapping, but the converse is not true. 

Lemma 2.3 Let X  and  be as in Lemma 2.2. D
 T D CB D   be a closed and totally quasi-  -as- 

ymptotically nonexpansive multi-valued mapping with 
nonnegative real sequences  v  n n


 and a strictly in- 

creasing continuous function  with  R  R

 0 0   ,if 0n nv    (as ) and n  1 0  , 
then  F T  is a closed and convex subset of . D

Proof. Let  nx  be a sequence in  F T , such that 

nx x . Since T  is totally quasi-  -asymptotically 
nonexpansive multi-valued mapping, we have 

    1n n n x z x x v x x            

for all z Tx  and for all n . Therefore,  N

   

    
 

1

lim

lim

0

n
n

n n
n

x z x z

x x v x x

x x

 

  







 



 

  

     

   

 

By Lemma 2.1(a), we obtain . Hence, z x
 Tx x  . So, we have  x F T  . This implies 

 F T  is closed. 
Let  F T p q  and  0 1t  , and put  

 1p t q  w t . Next we prove that . Indeed, 
in view of the definition of 

 w F T
 , letting , we 

have  

n
nz T w

 
 

     
 

22

22

2

2 2

2

2 1

1

1

n n n

n n

n n

w z w w Jz z

w tp t q Jz z

w t p z t q z

t p t q



 

    

     

     

   

    (2.8) 
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Since 

     
   

     

  
    

   
   

2 2

2 2

2 2 2

, 1 ,

, ,

1 , ,

2 , ,

1 2 , ,

1 ,

1 , .

n n

n n

n n

n n

n

n

n n

t p z t q z

t p w v p w

t q w v q w

t p p Jw w v p w

t q q Jw w v q w

t p t q w tv p w

t v q w

 

   

   

  

n 

 

  

 

      
       

      

       

       
    





w
w

 

(2.9) 

Substituting (2.8) into (2.9) and simplifying it, we 
have 

       
 

1

0 as

n n n

n

w z tv p w t v q w

n

    



         
    

 

By Lemma 2.2, we have n . This implies that 
. Since  is closed, we have  

, i.e., . This completes the proof of 
Lemma 2.3.                                   □ 

z 
 1

n
nz TT w  

 Tw w 
T

w F T

Definition 2.4 A mapping  is said to 
be uniformly -Lipschitz continuous, if there exists a 
constant  such that 

 T D CB D 
L
0L  n nx y L x y   , where 

n n
nnx y D x y T y   x T . 

Definition 2.5 
(1) A countable family of mappings  is 

said to be uniformly quasi-
 iT D D 

 -nonexpansive, if  
, and  1 ii

F F T



  

 p z    , ip x D p   x F z T x  . 

(2) A countable family of mappings  is 
said to be uniformly quasi-

 iT D D 
 -asymptotically nonexpan- 

sive, if , and there exists a real se-  1 ii
F F T




  

quence  such that,   1n nk k   1

    .n
n n n ip z k p x x D p F z T x            (2.10) 

(3) A countable family of mappings  is 
said to be totally uniformly quasi-

 iT D D 
 -asymptotically non- 

expansive multi-valued, if  and   1 ii
F F T




  

there exists nonnegative real sequences    n nv   with 
0 0n nv     (as ) and a strictly increasing 

and continuous function  with 
n 

    0 0   
such that 

     
1 .

n n

n
n i

p z p x v p x

x D n p F z T x

n           
       


    (2.11) 

Remark 2.4 From the definitions, it is obvious that a 
countable family of uniformly quasi-  -nonexpansive 

multi-valued mappings is a countable family of uniformly 
quasi- -asymptotically nonexpansive multi-valued map- 
pings, and a countable family of uniformly quasi- -asy- 
mptotically nonexpansive multi-valued mappings is a 
countable family of totally uniformly quasi- -asympto- 
tically multi-valued mappings, but the converse is not 
true. 

3. Main Results 

Theorem 3.1 Let X  be a real uniformly smooth and 
strictly convex Banach space with Kadec-Klee property, 
D be a nonempty closed convex subset of X,  

i  be a closed and uniformly i - 
Lipschitz continuous and a countable family of uniformly 
totally quasi-

1 2T D D i   3   L

 -asymptotically nonexpansive multi-valu- 
ed mappings with nonnegative real sequences  nv   
 n , 0n nv    (as ) and a strictly increas- 
ing continuous function  with  

n 
R   R 

  0 0   satisfying condition (2.11). Let  n  be a se- 
quence in  0 1  such that 0n  . If  nx  is the se- 
quence generated by 

 
 

     
 

1

1 1

1
1

1 1

1

1 1

is arbitrary

sup

1

1 2
n

n
n i n n n n i

n n i n i

n n

n D

D D

y Jx Jz z T x

D z D z y

z x z x

x x n

 



    






  



   


 



n

n

i1 1

n

x X

J      
    


    


   







 

 (3.1) 

where  supn n p F nv p x n         , i F T  is the 
fixed point set of i , and  is the generalized pro- 
jection of 

T
1nD 


X  onto 1nD  . 

If  and  1 ii
F F T


  F  is bounded and  

1 0  , then 1limn n Fx x   . 
Proof. (I) First, we prove that F and n  D  1n  are 

closed and convex subsets in . In fact, it follows from 
Lemma 2.3 that 

D
  

D

1iF T i 

D

 is a closed and convex 
subsets in D. Therefore F is closed and convex subsets in 
D. Again by the assumption, 1  is closed and con- 
vex. Suppose that n  is closed and convex for some 

. In view of the definition of 

D

1n   , we have 

   
    

   

     



 
  

1 1
1

1
1

1
1

222

1

sup

1

1

: 2 , 2 1 ,

1

n n n i n
i

n n n

n i n
i

n n n n

n n n i
i

n n n n i

D z y z x

z x

z D z y z x

z x D

z D z Jx z Jx y

x x y

  

  

  

  

 

 

 





1
sup

i

D z

2n

n

z J

D






     

   

   

   

 

   











 

   


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This shows that  is closed and convex. The con-
clusions are proved. 

1nD 

(II) Next, we prove that nF D , for all . 1n 
In fact, it is obvious that 1F D . Suppose that 

nF D . Hence for any , by (2.4), we have nDu F 

     
     
        
 

     

     

1
1

1

1

1

1

1

1

1

1 sup

1 1

n i n n n

n n n

n n n n n

n

n n n n n
p F

n n n n

u y u J Jx Jz

u x u z

u x u x v u x

u x

u x v p x

u x u x i

   

   

n      

 

    

    






    

    

         
 

         
         



 

(3.2) 
Therefore we have 

       1
1

sup 1n i n n n n
i

u y u x u x     


         (3.3) 

This shows that  and so 1nu F D   nF D . The 
conclusions are proved. 

(III) Now we prove that  nx  converges strongly to 
some point .  p D 

In fact, since 1nn Dx x  , from Lemma 2.1(c), we 
have 1n n 0 nx y Jx Jx y D       Again since  

nF D , we have 1 0n nx u Jx Jx    , . It 
follows from Lemma 2.1(b) that for each  and for 
each ,  

u F 
u F

1n 

   
     

1 1 1

1 1 .

nn D

n

x x x x

u x u x u x

 

  

   

     
      (3.4) 

Therefore,   1nx x   is bounded, and so is  nx . 
Since 1nn Dx x   and 

11 1 1nn D n nx x D
    

1

D , we 
have   1 1n nx x x    


x


. 

This implies that  1nx x  is nondecreasing. Hence  

 1limn n x x   exists. Since X is reflexive, there exists  

a subsequence    
in nx x  such that 

inx p  (some  

point in 1 ). Since n  is closed and convex and 

n . This implies that n  is weakly closed and 
 for each . In view of  

D D
D

D

1nD  
np D 

D
1n 

1i ni
n Dx x  , we have 

in i  
Since the norm 

   1 1 , 1p x n      x x 
  is weakly lower semi-continuous, 

we have  

 

 
 

1

2 2

1 1

2 2

1 1 1

liminf

liminf 2

2

i

i i
i

n
n

n n
n

x x

x x Jx x

p p Jx x p









  



   

     , x

 

and so 

   

   
1 1

1 1

liminf

limsup

i

i

n
n

n
n

p x x x

x x p x

 

 









  

    

1

 

This shows that   1lim
i in nx x p  
    x  and we  

have 
inx p . Since 

inx p , by virtue of Kadec-  

Klee property of X , we obtain that 
in

i
lim x p


 Since  

  1nx x   is convergent, this together with  

   1i in nlim x x 1p  
 x    shows that  

   1lim
in n 1x x p 

 x   . If there exists some sub- 

sequence    
jn nx x  such that 

jnx q , then from  

Lemma 2.1, we have  

     
   
   

   

1

1 1 1

1 1

1 1

lim lim

lim

lim

0

i j i n ji j i j

i n ji j

i j
i j

n n n D
n n n n

n D
n n

n n
n n

p q x x x x

x x x x

x x x x

p x p x

  

 

 

 



   

 

 

 

    

       

    
 

     

 

i.e., p q   and hence  

nx p                      (3.5) 

By the way, from (3.4), it is easy to see that 

 sup 0n n n n
p F

v p x   


      

1

    (3.6) 

(IV) Now we prove that . p F 
In fact, since 1n nx D  , from (3.1), (3.4) and (3.5), 

we have 

 
     

1
1

1 1 1

sup

1 0

n n i
i

n n n n n n

x y

x x x x



    

 


 



       
  (3.7) 

Since nx p , it follows from (3.6) and Lemma 2.2 
that 

 n iy p n
                (3.8) 

Since  nx  is bounded and  iT  is a countable fam- 
ily of uniformly totally quasi- -asymptotically nonex- 
pansive multi-valued mappings,  is bounded. 
In view of 

n
n iz T x n

0n  , from (3.1), we have 

1lim lim 0n i n n n
n n

Jy Jz Jx Jz 
         (3.9) 

Since n iJy Jp
  , this implies nJz Jp . From 

Remark 2.1, it yields that 

nz p                    (3.10) 

Again since 

0n n nz p Jz Jp Jz Jp           (3.11) 
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this together with (3.9) and the Kadec-Klee-property of 
X  shows that  

nz p                   (3.12) 

On the other hand, by the assumptions that  is 
-Lipschitz continuous for each , we have  

iT

iL 1i 

 
 

 

1 1 1

1

1 1 11

i n n

i n n n n

n n n n

i n n n n n n

d T z z

d T z z z x

x x x z

L x x z x x z

  



  



   

   

       

 (3.13) 

From (3.12) and nx p , we have that 
  0i n nd T z z 

  T p 
. In view of the closeness of , it yields  iT

that , which implies that  1i p i     p F  . 

(V) Finally we prove that  and so  1Fp   x

1n Fx x
w  

. 
Let . Since n , we have  

. This implies that  
1F

  1p x w  


x
1

1 

w F D 
x 

    1 1lim n
n

p x x x w x  


         (3.14) 

which yields that 1F . Therefore,  p w x   
1n Fx x . The proof of Theorem 3.1 is completed. 

By Remark 2.4, the following corollaries are obtained. 
□ 

Corollary 3.1 Let X and  be as in Theorem 3.1, 
and a countable family of mappings  

 be a closed and uniformly i -Lipschitz 
continuous a relatively nonexpansive multi-valued map- 
pings. Let 

D

iT D D 
L 1 2 3i    

n  in  with 0 1  lim 0n n  . Let 
 nx  be the sequence generated by  

 
 

       
 

1

1 1

1
1

1 1

1

1 1

is arbitrary

1

sup

1

1 2
n

n i n n n n i n

n n i n i

n ni n

n D

x X D D

y J Jx Jz z T x

D z D z y

z x z x

x x n

 



   






  





   

           


    


     

 (3.15) 

where  iF T  is the set of fixed points of , and 
 is the generalized projection of 

iT

1nD 
 X  onto 1nD  , If  

 

1 ii
F F T


    and F is bounded, then  nx  con-  

verges strongly to 1F x . 
Corollary 3.2 Let X  and  be as in Theorem 3.1, 

and a countable family of mappings i   
 be a closed and uniformly i -Lipschitz 

continuous quasi-phi-asymptotically nonexpansive multi- 
valued mappings with nonnegative real sequences  

D
T D D 

L 1 2 3i    

   1nk  
 n

 and  satisfying condition (2.1). 
Let 

1nk 
  be a sequence in  0 1  and satisfy  

lim 0n n  . If  nx  is the sequence generated by  

 
 

      
 

1

1 1

1
1

1 1

1

1 1

is arbitrary

1

sup

1

1 2
n

n
n i n n n n i n

n n i n i

n n n

n D

x X D D

y J Jx Jz z T x

D z D z y

z x z x

x x n

 



n   






  



   


       
    


     


     



 (3.16) 

where  iF T  is the set of fixed points of i , and 

nD

T

1
  is the generalized projection of X  onto 1nD  , 
and    1 sup p F nk p n n x  

 
  

If  and F is bounded, then 
1 ii

F F T


    nx   

converges strongly to 1F x . 

4. Application 

We utilize Corollary 3.2 to study a modified Halpern ite- 
rative algorithm for a system of equilibrium problems. 

Theorem 4.1 Let , D X  and  n  be the same as 
in Theorem 3.1. Let f D D  R  be a bifunction sa- 
tisfying conditions (A1)-(A4) as given in Example 2.6. 
Let  be a mapping defined by (2.5), i.e., rT X D 

 

  1
0

rT x

x D f z y y z Jz Jx y D
r

x X

             
 

  

 

Let  nx  be the sequence generated by  

 

 
 

     
 

1

1 1

1
1

1

1

1 1

is arbitrary

1 0

0

1

1

1 2
n

n n n n

n r n

n n n n

n n n

n n

n D

x X D D

f u y r y u Ju Jx

y D r u T x

y J Jx Ju

D z D z y

z x z x

x x n

 



   









n

  
       
      


     


   
     
       



  (4.1) 

If  rF T   , then  nx  converges strongly to  

  1F T
x  which is a common solution of the system of  

equilibrium problems for f . 
Proof. In Example 2.6, we have pointed out that 

 n r nu T x ,    rF T EP f  and rT  is a closed qua- 
si- -nonexpansive mapping. Hence (4.1) can be rewrit- 
ten as follows: 

 
 

     
 

1

1 1

1
1

1

1

1 1

is arbitrary

1

1

1 2
n

n n n n n

n n n

n n

n D

x X D D

y J Jx Ju u T x

D z D z y

z x z x

x x n

 



   









   

           


    
       

r n

n
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Therefore the conclusion of Theorem 4.6 can be ob- 
tained from Corollary 3.2. 
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