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ABSTRACT 

Starting from the duality between electric and magnetic field, we have made an attempt to discuss the quantum hall 
effect from the consideration of magnetic monopole in view of electron monopole duality. Starting from the dual dy-
namics of electric and magnetic charges, we have reformulated a consistent theory of quantum hall effect in presence of 
monopole. Speculating the existence of magnetic monopoles in magnetic materials (metals), we have accordingly modi-
fied the parameters; like drift velocity, current density, Hamiltonian and eigen values and eigen function for harmonic 
oscillator; resposible to examine the quantum Hall effect in metals. 
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1. Introduction 

The Hall Effect was discovered by Sir Edwin Hall [1] in 
1879 while he was under graduate student in Johns Hop-
kins University. But at that time, even the electron was 
not experimentally discovered. Clear understanding had 
to wait until quantum mechanics came in to appearance. 
A hundred years later, the Hall effect was revived as a 
source of wonderful physics. In 1980, Klaus von Klitzing 
discovered [2] that two dimensional electron gas, at very 
low temperatures and strong magnetic fields, displays a 
remarkable quantization of the Hall conductance. Namely, 
the graph of the Hall conductance as the function of the 
magnetic field, is a staircase function, where the value of 
the Hall conductance at the plateaus is, to great accuracy, 
an integer multiple of  2 = 1 25812.807572e h  . This 
discovery led to superior standards of resistance and 
von-Klitzing was awarded the Nobel Prize in 1985 for his 
discovery. In a 1981 Robert Laughlin put forward [3] an 
argument for the quantization of the Hall conductance. 
This argument played a seminal role in the development 
of the theory of the Integer Hall effect. On the other hand, 
the lack of symmetry between electric and magnetic 
fields is one of the oldest puzzles in physics. One of the 
biggest unresolved questions in theoretical physics is that 
associated with the quantization of electric charge, i.e. 
why the observed electric charges in all the electrically 
charged matter is an integer multiple of a “fundamental 
charge” ‘e’, the electron charge.Why is it possible to iso-  

late positive and negative electric charges, but not north 
and south magnetic poles? P. A. M. Dirac [4] introduced 
the idea of magnetic charge (monopole) ‘g’ in the uni-
verse to answer this question. As a matter of fact, the 
quantum dynamics of a particle with electric charge ‘e’ 
under the influence of the magnetic field generated by 
such particle is well defined if the well known Dirac 
Quantization condition [4] ‘ = 1 2eg n c ’, (where n Z  
is an integer) is satisfied. But unfortunately all experi-
mental searches [5] to discover the magnetic monopoles 
have been found to be negative and proved their exis-
tence fruitless. However, a group of physicists has been 
claimng [6] now a days the possibility of indirect evi-
dences of magnetic monopoles in the consnsed matter 
physics.. So, it is being speculated [7] that that magnetic 
materials may provide a new context for observing mag-
netic monopoles which plays an important role in con-
densed matter physics. While a magnetic monopole par-
ticle has never been conclusively observed, there are a 
number of phenomena [6,7] in condensed-matter physics 
where a material, due to the collective behavior of its 
electrons and ions, can show emergent phenomena that 
resemble magnetic monopoles in some respect. So, 
keeping in view the recent interests on monopole and 
their possible role to produce strong magnetic field re-
sposible for quantum Hall effect, in this paper, we have 
made an attempt to investigate the consistent theory of 
classical and quantum Hall effect for which the magnetic 
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field is produced due to the presence of magnetic mono-
pole like electron produces electric field. Starting from 
the duality between electric and magnetic field, we have 
tried to study the theory of quantum hall effect from the 
consideration of magnetic monopole in view of electron 
monopole duality. Taking into account the dual dynamics 
of electric and magnetic charges, we have reformulated a 
consistent theory of quantum hall effect in presence of 
monopole. Speculating the magnetic monopoles in mag-
netic materials, we have accordingly, modified the pa-
rameters; like drift velocity, current density, Hamiltonian, 
eigen values and eigen function for harmonic oscillator; 
resposible to examine the quantum Hall effect in metals. 

2. Dual Electrodynamics 

The concept of electromagnetic (EM) duality has been 
receiving much attention [8,9] in gauge theories, field 
theories, Supersymmetry and super strings. Duality in-
variance is an old idea introduced a century ago in clas-
sical electromagnetism for the following Maxwell’s 
equations in vacuum (using natural units , = = 1c 
space-time four-vector    = , , , ,x t x y z   =x x

 


 

and  = 1, 1, 1, 1 =       through out the text) 
[10], 
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as these were invariant not only under Lorentz and con-
formal transformations but also invariant under the fol-
lowing duality transformations, 
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where  and and E


H


 are respectively the the electric 
and magnetic fields. For a particular value of = 2  , 
Equations (2) reduces to 
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 = 1i    so that the Maxwell’s Equations (1) be writ-
ten as 
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which is also invariant under following duality transfor-
mations 

 exp .i  
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              (6) 

The duality symmetry is lost if electric charge and 
current source densities enter to the conventional Max-
well’s equations given by 
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where    = ,ej  j


 is described as four-current source 
density and symbol e is used for electric charge. Conse-
quently, Maxwell’s equations may be solved by intro-
ducing the concept of vector potential in either two ways. 
The conventional choice has been used as 

= ; =
A

E grad H
t
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where    = ,A A 


 is denoted as the four potential. 
Accordingly, the second pair of the Maxwell’s Equations 
(7) becomes kinematical identities. So the dynamics is 
contained in the first pair. Equation (5) is now modified 
as 

= ; =e i i
t
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which is no more invariant under duality transformations 
(6). Here if we may consider the another alternative way 
to write 
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by introducing another potential   , we see = ,B 


that source free Maxwell’s Equations (1) are unchanged 
but but Maxwell’s Equations (7) are changed as 
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where    = ,mk   k


. Here, the first pair becomes kin- 
ematical whereas the dynamics is contained in the second 
pair. Equation (11) may also be obtained if we apply the 
transformations (3-4) along with the following duality 
transformations for potential and current i.e. 
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So, we may identify the potential   = ,B  B


 as the 

dual potential and the current    = ,mk k


  is used as 
the dual current. The symbol m is written for magnetic 
(dual of electric) case. Correspondingly, the differential 
Equations (11) are identified as the dual Maxwell’s equa-
tions and accordingly one can develop the dual electro-
dynamics. Thus, the concept of electromagnetic duality in 
the Maxwell’s equations establishes the connection be-
tween electric and magnetic charge as, 
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where g is described as the dual electric charge (charge of 
magnetic monopole). Hence we may recall the dual elec-
trodynamics as the dynamics of pure magnetic monopole 
and the corresponding physical variables associated there 
are described as the dynamical quantities of magnetic 
monopole. 

The Lorentz force equation of motion for a dual charge 
(i.e magnetic monopole) may now be written from the 
duality Equations (3) and (13) as 
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force acting on a p rticle of charge g, mass m and moving 
with the velocity  in electromagnetic fields. 

a
v


3. Hall Effect in Presence of Monopoles 

The QHE is a manifestation of quantum mechanics ob-
servable at macro- scopic scales. In order to illustrate the 
role of magnetic monopole in classical and Quantum Hall 
Effect, let us start with the Lorentz force Equation (14). It 
is to be noted that for the case of pure monopole, we may 
assume the magnetic field as stationary and electric field 
is obtained for moving magnetic particle containing 
monopole. If the volume charge density of a magnetic 
monopole is ,m  then the magnetic current density k


 

is described as 

= mk v
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and accordingly the continuity equation reduces to 
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So the Biot-Savart law in presence of magnetic mono-
pole charge is associated with electric field and is thus 
defined as 
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where Im is a magnetic current, 0  is permittivity of free 

space. So, the Lorentz-Drude theory is modified for mag-
netic conductivity and gives rise to the following expres-
sion for drift velocity as 
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where   is the relaxation time and m is the mass of 
magnetic monopole. So, the magnetic current density is 
modified as 
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where 2
0 = ng m  . In the study state case the Lorentz 

force Equation (14) is vanishing and thus leads to 
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Hence, the current (15) is described as 

0= .
v E

k
c

 
 

               (21) 

Thus, the expressions for steady state behavior of 
conductivity and resistivity become 
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Hence, we get 

=k H .
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                  (23) 

Accordingly, we may modify the drift velocity for 
magnetic monopole. Thus the classical Hall effect for two 
dimensional case in presence of monopoles describes 

0
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where c is the cyclotron frequency given by 
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So, we can easily get 

0 0

1
= = ,  = = c

xx yy xy yx

 
   

 
       (26) 

and 

 

 

2

2

= =
1

= =
1

o
xx yy

c

o c
xy yx

c


 

 
;

  
 

 






      (27) 

Hence, the relation between conductivity and resistiv-
ity is described as 
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for classical Hall effect. In quantum mechanics, the Ham-
iltonian is (  along the X- direction) 
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Now we choose the Landu gauge in which the vector 
potential is independent of Y— coordinate as 

= 0, ,0 .xA E                    (30) 

Let us take a wave function which has a plane-wave 
dependence on the Y— coordinate as 
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and substituting the Equation (31) into the Schroedinger 
equation, we get 
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where Ic is the classical cyclotron orbit radius . 
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So, the eigan values and eigan states are described as 
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4. Summary and Conclusions 

The precision of the quantization in the Hall effect is re-
markable in that it takes place in systems that are impre-
cisely characterized on the microscopic scale. Different 
samples may have dierent distributions of impurities, 
different geometry and different concentrations of elec-
trons. Nevertheless, whenever their Hall conductances 
are quantized, the quantized values mutually agree with 
great precision. The quantum Hall effect may also be 
interpreted [11] as a measurement of the fine structure 
constant so that the Hall conductance may have topo-
logical signicance. Since magnetic monopoles have the 
topological origin [12] and the quantum Hall effect is 
described in terms of strong magetic field, we have dis-

cussed here the theory of classical and quantum Hall ef-
fect in presence of magnetic monopole so that the mag-
netic field can be obtained directly instead of rotating an 
electric charge. In order to seek the existence of magnetic 
monopoles in condensed matter physics [6,7], particu-
larly in case of Hall effect, in the foregoing analysis, we 
have discussed the manifestly covariant theory of mag-
netic monopoles and established the connections among 
the various parameters of classical and quantum Hall 
effect in terms of electron monopole duality invariance. 
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