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ABSTRACT 

This paper is concerned with the extension of a recently developed probabilistic framework based on Weibull’s weakest 
link and extreme-value statistics to aero-engine materials like titanium alloy and nickel-base super alloys using simula- 
tion strategies that capture both the essence of notch root stress gradient and the complexity of realistic microstructures. 
In this paper, notch size effects and notch root inelastic behavior are combined with probability distributions of micro- 
scale stress-strain gradient and small crack initiation to inform minimum life design methods. A new approach which 
can be applied using crystal plasticity finite element or closed-form solution is also proposed as a more robust approach 
for determining fatigue notch factor than the existing classical methods. The fatigue notch factors predicted using the 
new framework are in good agreements with experimental results obtained from literature for notched titanium alloy 
specimens subjected to uniaxial cyclic loads with various stress ratio. 
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1. Introduction 

Titanium alloy is widely used in aero engine components. 
The fatigue resistance of aero-engine components made 
from this material can be drastically reduced by the 
presence of small notches on the components formed 
from the ingestion of foreign objects causing foreign 
object damage (FOD) [1-2]. To account for the effects of 
FOD on the fatigue strength of these materials, the dam- 
age are usually modeled as notches with a certain depth 
and notch root radius [1-2]. The severity of these notches 
in materials is characterized by the elastic stress concen- 
tration factor, kt which is the ratio of peak (maximum) 
local stress at the notch root to the remotely applied 
stress, S as shown in Figure 1.  

peak
tk

S


                 (1) 

kt is dimensionless and a compilation of its values for 
different notch geometries and loading modes can be 
found in Peterson’s book [3]. However, kt under-esti- 
mates fatigue life and several arguments have been at- 
tributed to this observation. The fatigue life of notched 

component is not only dependent on the peak stress as 
predicted by kt, but also on the average stress that acts 
over a finite damage process zone. Consequently, fatigue 
life prediction methods based on kt typically do not con- 
sider stress gradients which have been shown to influ-
ence the fatigue life of complex notched components 
[4-5]. Thus, the actual reduction factor on long fatigue 
lives is typically represented by the concept of fatigue 
notch factor, otherwise known as the fatigue strength 
reduction factor, kf. 
 

 

Figure 1. Stress distributions in a notched specimen. *Corresponding author. 
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The fatigue notch factor, kf, is determined at a given 
number of completely reversed cycles (typically 106 or 
107) to crack initiation and is given as: 

unnotched

notched

f
f

f

k



                (2) 

where  is the fatigue strength of the unnotched 
specimen and  is the fatigue strength of the 
notched specimen. The difference between kt and kf for a 
given microstructure is typically represented by the notch 
sensitivity factor, q given as: 

unnotched
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notched
f

1

1
f

t

k
q

k





                   (3) 

At q = 0, there is no notch sensitivity and at q = 1 we 
have full notch sensitivity, i.e., full theoretical elastic 
concentration effect. Several empirical relations have 
been developed to estimate the fatigue notch factor of a 
material and its associated notch sensitivity index. These 
techniques include: the classical methods (Neubers [6-7], 
Peterson [3,8] and Heywood [9]), stress field intensity 
method [10], and probabilistic method based on linear 
elastic fracture mechanics [11]. Detail review of these 
methods can be found in [12], each attempt to simplify 
the complex behavior of fatigue in notched components 
to a few geometric and characteristic material constants. 
However, these approaches suffer from some fundamen- 
tal drawbacks. Among these drawbacks is that the fatigue 
notch factors are obtained through time consuming and 
costly experiments. Moreover, the relationship of micro- 
structure to Kf, using these constants has proven difficult to 
establish. Recently, Owolabi et al. [14] have established a 
probabilistic framework based on weakest link theory 
and extreme-value statistics which incorporates informa- 
tion regarding the peak stress and stress gradient relative 
to microstructure length scales within a well defined 
fatigue damage process zone around the notch root. This 
paper combines the developed probabilistic framework 
with other existing probabilistic formulations that con- 
sider the size distribution and different competing dam-
age mechanisms for aero-engine materials. 

2. Material Systems  

The alloy used for this study is a dual-phase titanium 
alloy, Ti-6Al-4V. Ti-Al alloys offer a range of properties 
such as high strength and fracture toughness at low tem- 
peratures to high strength and creep resistance at elevated 
temperatures. These wide ranges of properties have led to 
extensive use of Ti-Al alloys in engineering applications 
from airframe components to compressor blades applica- 
tions. The experimental data used in this work were ob- 
tained from Haritos et al. [1], Lanning et al. [13] and 
Naik et al. [15] on Ti-6Al-4V for various notch root ge- 

ometries and stress ratios. The Ti-6Al-4V specimens 
used in these papers were obtained from forged bar, 
which were initially heat treated to 705˚C for 2 h, and 
then followed by static argon cooling to below 149˚C. 
The material was subsequently annealed in vacuum at 
549˚C for 2 h. This is then followed by static argon cool- 
ing to below 149˚C. The microstructure of the resulting 
bar is as shown Figure 2.  

3. Crystal Plasticity Model of Ti-6Al-4V 

Crystal plasticity models are more suited for studying 
heterogeneity and interaction across grains in the notch 
root field as they relate grain scale stress to crystallo- 
graphic slip response [16-18]. The use of crystal plastic- 
ity is thus relevant for the accurate prediction of the 
stress-strain field response at the notch root. The crystal 
plasticity model used in this work is based on 3D crystal 
plasticity models developed by Mayeur and McDowell 
(2007) [19]. Thus, only the summary of the crystal plas- 
ticity constitutive models is presented in this section.  

The deformation in the material is based on a standard 
two term multiplicative decomposition of the deforma- 
tion gradient into elastic and plastic parts, i.e.,  

e pF F F               (4) 
Here, F  is the total deformation gradient, Fp cap- 

tures the dislocation glide through the lattice while Fe 
captures the rigid body rotation and elastic stretching of 
the lattice. The plastic velocity gradient ˆpL  defined as 
the sum of the crystalline shear displacement rates over 
all slip systems k is given in the isoclinic, lattice invariant 
intermediate configuration as [20]: 

  1
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sysN

ˆp p p k k k

k
F F S n





    L

Here, k is the slip system shearing rate, and 0  and 

0  are fixed unit vectors in the slip direction and slip 
plane normal direction, respectively. The slip vectors 

 and  remain unchanged through deformation Fp  

       (5) 
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Figure 2. Ti-6Al-4V forged plate microstructure [1]. 
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from the reference to the intermediate configuration and 
maintain orthogonality through Fe. The relationship be- 
tween the slip system shearing rate and the resolved 
shear stress of the kth slip system is described by the 
power law flow rule given by McGinty [21] as: 

0 sgn

Mk k k
k k

kD

  
k  

 
         (6) 

Here, γ0 is the reference shearing rate, M is the inverse 
strain-rate sensitivity exponent which controls the rate 
sensitivity of flow, τk is the resolved shear stress, χk is the 
back stress, кk is the length scale-dependent threshold 
stress and Dk is the drag stress. As developed by Zhang et 
al. [22], the drag stress is taken as a non-evolving con- 
stant, while the back stress evolves according to an Arm- 
strong-Frederick direct hardening/dynamic recovery type 
of equation, i.e., 

k k k
Dh h k                  (7) 

With χk (0) = 0. The threshold stress is expressed as  

yk k
skd


                (8) 

Simulation of Notched Components 

The crystal plasticity constitutive model was coded into 
ABAQUS 2006 UMAT, based on previous work by 
Zhang et al. [22]; Mayeur and McDowell, 2007 [19]. For 
textured Ti-6Al-4V alloy, some of the material parame- 
ters in the crystal plasticity are obtained from Bridier et 
al. [23]. Finite element simulation was performed on 
three different geometries, meshed using 3D stress four- 
node linear tetrahedron element type (C3D4) and con- 
sisting of approximately 218940 elements to estimate the 
stress distribution and possible plastic straining that oc- 
cur in the notched specimens. The dimensions of the 
specimens used and the different test cases are as given 
in Table 1. A diagram of the gage section of the speci- 
men is provided in Figure 3.  
 

Table 1. The 7 different test cases. 

Test 
Case 

Kt 
Notch radius, 
  (mm) 

Notch 
depth,  
h (mm) 

R-ratio 
Average alternating 
HCF strength at 106 

cycles (MPa) 

1 2.78 0.330 0.729 −1 173.6 

2 2.78 0.330 0.729 0.1 158.9 

3 2.78 0.330 0.729 0.5 104.6 

4 2.78 0.203 0.254 0.10 167.2 

5 2.78 0.203 0.254 0.50 105.2 

6 2.78 0.127 0.127 0.10 144.7 

7 2.78 0.127 0.127 0.50 111.0 

 

h 

d

D

60˚ 
ρ 

 

Figure 3. Gage section of the cylindrical specimen with a 
circumferential V-notch [1]. 
 

To reduce computational time, the notched specimen 
geometries are decomposed into three different regions: 
an outermost region, far from the notch root, where iso- 
tropic linear elasticity is used; an intermediate transition 
region where macroscopic J2 cyclic plasticity theory is 
used; and finally the notch root region where crystal 
plasticity theory is used. The element size at the crystal 
plasticity region was chosen to coincide with the average 
grain size of Ti-6Al-4V which is 45 μm. The domain 
decomposition is as shown in Figure 4. Also, one quar- 
ter of the cylindrical notched specimen was modeled 
because of the symmetry in loading and geometry of the 
specimen as shown in Figure 5. 

The bottom of the notched specimen is encastre while 
symmetry boundary conditions are applied to the two 
planes of symmetry. The notched specimens were tested 
at four different load ratios; R = 0.1, R = 0.5 and R = −1. 
Average alternating HCF strength at 106 cycles, as de- 
termined by Naik et al. [15] and as contained in Table 1 
for different load ratios, are applied to the top of the 
specimen. 

This paper is concerned with the extension of a re- 
cently developed probabilistic framework based on 
Weibull’s weakest link and extreme-value statistics to 
aero-engine materials like titanium alloy and nickel-base 
super alloys using simulation strategies that capture 
both the essence of notch root stress gradient and the 
complexity of realistic microstructures. In this paper, 
notch size effects and notch root inelastic behavior are 
combined with probability distributions of microscale 
stress-strain gradient and small crack initiation to in- 
form minimum life design methods. A new approach 
which can be applied using crystal plasticity finite ele- 
ment or closed-form solution is also proposed as a more 
robust approach for determining fatigue notch factor than 
the existing classical methods. The fatigue notch factors 
predicted using the new framework are in good agree- 
ments with experimental results obtained from literature 
for notched titanium alloy specimens subjected to uniax- 
ial cyclic loads with various stress ratio.  
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Figure 1. Domain decomposition of the cylindrical notched 
specimen geometry. 
 

 

X 
Y Z 

 

Figure 2. Finite element mesh for 0.33 mm notch root ra- 
dius and Kt = 2.78 consisting of four-node linear tetrahe- 
dron element type (C3D4). 
 

For a smooth specimen with defects having a fatigue 
damage process zone of volume V, the whole volume is 
divided into small volume elements, dV with probability 
of failure of a sufficiently small volume element given 
as:  

d dP V               (9) 

where here,   is the critical defect density defined as 
the expected number of defects per unit volume of the 
smooth specimen. Using weakest link theory, the prob- 
ability of survival of the entire volume is obtained from 
the probability of survival of all “m” number of sub- 
volumes i.e.  

  
1 1

1 d 1 d
m m

s i
i i

P P 
 

     V

V

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      (10) 

This equations assumes that the defects are randomly 
distributed within the volume and thus do not interact, 
which is only reasonable when considering the formation 

of a fatigue crack(s) in high cycle (HCF) and very high 
cycle fatigue (VHCF) regimes. Following the framework 
presented in [14], as the volume of each small element 
tends to zero, Equation (10) can be transformed into  

exp d
d

s
V

P 


 
 
             (11) 

Using the generalized extreme value distribution func- 
tion, the distribution of defects, a, that are above the 
threshold, ath, is modeled by a power law of the form  

1

0 0

1
1 tha a

V a



 


  
      

          (12) 

where a0 and   are the scale and shape parameters re- 
spectively. Substituting (12) into (11) yields 

1

0 0

1
exp 1 d

d
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s

V

a a
P V

V a




              

     (13) 

If *
0tha a   , re-arranging Equation (13) yields, 

1

*
0 0

1
exp ds

aP V
V a

       
   
         (14) 

where  is regarded here as the mean defect size. 
Equation (14) is valid only if 

*
0a

0  . The critical defect 
size is related to the microscopic stress (taking here as a 
random variable) through a power law relationship of the 
form 

z

A
a

                  (15) 

where A and z are materials constants. Similarly, the 
stress amplitude, σ0 corresponding to the mean defect 
size  can be taken as the fatigue limit of the reference 
volume Vo for 50% failure probability. The two parame- 
ters can also be related by a power law of the form: 

*
0a

0 *
0

z

A

a
                 (16) 

Combining Equations (15) and (16) we have 

0
*
0

z

a

a
a



 

  
 

              (17) 

Substituting Equation (17) into Equation (14) yields 

0 0

1
exp d

b

sP V
V




      
   
          (18) 

where b = z/ξ. For ξ > 0, b and σ0 represents a 2-param- 
eter Weibull shape and scale parameters. The cumulative 
probability of HCF failure of the component, specifically 
defined can be obtained from Equation (18) as 
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0 0

1
1 exp d

b

fP
V




      
   
 V 

        (19) 

To facilitate development of the expression for fatigue 
notch factor from Equation (18), the concept of stress 
homogeneity factor that have been used is introduced 
here. Thus Equation (18) can be re-written as, 

max

0

1 exp

b

f
o

kVP
V
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where 
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1
d

b

k
V



 

  
 
 V           (21) 

is regarded as the stress homogeneity factor. Conven- 
tionally, the fatigue notch factor is the ratio of unnotched 
to notched fatigue strength at the same probability of 
failure (usually 50%). Using Equation (20), the probabil- 
ity of failure of unnotched specimen and a notched 
specimen will be the same when 

max, max,

0 0

exp exp
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ss s n n
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where the subscripts n and s represent the respective 
value of the variable for notched and smooth (unnotched) 
specimens. The ratio of the smooth to notch fatigue driv- 
ing force parameters (i.e., the stress amplitude) is used to 
define a new fatigue notch factor given as 

1 1
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b b
s n n

f
n s s

k V
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


   
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      (23) 

For smooth specimen that is loaded at a very low 
stress or strain amplitude in the HCF regime, the number 
of critically stressed grains (or elements) is very small. 
Thus for the life limiting case in which only one grain or 
element is critically stressed above the threshold, Vs = Ve 
(i.e., volume of element or grain) and Ks = 1; thus Equa- 
tion (23) becomes 
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      (24) 

However, if the materials contain some pores or inclu- 
sions, Equation (23) must be used. It is important to state 
that Equations (23) and (24) can be used only if subsur- 
face crack initiation is the failure process, if crack origin- 
nates from the surface, then the volume parameter in this 
equation should be replace with the surface area. 

4. Closed Form Solution for Fatigue Notch  
Factor  

To resolve inelastic deformation at the scale of micro- 
structure to facilitate next generation microstructure- 
sensitive notch root analyses inherently requires mesh 
refinement to the scale of microstructure, which is often 
several orders of magnitude finer than the scale of the 
component. Moreover, the kind of constitutive equations 
that must be used are often of advanced form and requir- 
ing rather sophisticated and time-consuming computa- 
tional strategies to perform concurrent analyses at the 
component and notch root microstructure scales. Ac- 
cordingly, direct application of multiscale finite element 
analysis is simply too computationally time consuming 
for practical microstructure-sensitive fatigue damage 
assessment of notched components under multiaxial 
loads. Thus, for practical engineering application, a more 
simplified and approximate model for fatigue notch fac- 
tor is presented here based on closed form solution for 
stress distribution at the notch developed by Glinka using 
the Creager-Paris solutions of the stress field ahead of a 
crack. For a notched component with notch root radius  
and stress concentration factor, kt, the axial stress distri- 
bution along the notch root centre line is given as: 

3 2
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1 2
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   (25) 

Finding the ratio of the stress amplitude to the maxi- 
mum stress and substituting into Equation (24) at x = ac 
(i.e., the critical distance) will allow the determination of 
an expression for the fatigue notch factor of the form 
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(26) 

Assuming that the critical distance is constant for the 
notched component with a notch root radius ρ, Equation 
(26) reduces to 

3 21 2 1

c c
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 (27) 

The above equation for kf was derived using the fa- 
tigue damage process zone based on critical distance, 
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probabilistic framework based on the weakest link, and 
the Glinka’s closed form solution based on the notch root 
stress distribution. The expression in Equation (25) has 
been shown to give a good prediction of the stress field 
for relatively blunt U-notches and be used over a distance 
of 3ρ from the notch root with an accuracy of approxi- 
mately 7% [15].  

proach, the value of kf was calculated using the closed 
form solution for fatigue notch factor in Equation (27) 
and the result is compared to experimental results deter- 
mined by R.A. Naik et al. [15] as shown in Table 2. 
Both results are in agreement with the experimental re- 
sults with minimal difference. The kf determined using 
the Weibull’s weakest link approach, when the loading 
ratio R = −1, is more accurate than for every other load- 
ing ratios tested.  5. Results and Discussion  

Also, the radius of curvature at the notch root plays a 
vital role on the stress gradient at the notch. This effect is 
captured by the fatigue notch sensitivity factor q given in 
Equation (3). Figure 6 gives a plot of the notch sensitive- 
ity factor as a function of the notch root radius for the  

The stress distribution obtained from the finite element 
analysis was used in determining the average kf for the 
geometry using the proposed probabilistic framework 
based on Weibull’s weakest link and extreme-value sta- 
tistics. Also as a further validation of the proposed ap-  
 

Table 2. Comparison of measured and predicted Kf using FEM and closed form analysis. 

Test Case Kt 
Notch radius,  
ρ (mm) 

Notch depth, 
h (mm) 

R-ratio Experimental average Kf
Kf using Weibull’s weakest 

link 
Kf using closed-form 

analysis 

1 2.78 0.330 0.729 −1 2.79 2.73 2.66 

2 2.78 0.330 0.729 0.1 1.80 1.89 1.88 

3 2.78 0.330 0.729 0.5 1.75 1.82 1.84 

4 2.78 0.203 0.254 0.1 1.71 1.86 1.80 

5 2.78 0.203 0.254 0.5 1.74 1.83 1.83 

6 2.78 0.127 0.127 0.1 1.98 2.05 2.01 

7 2.78 0.127 0.127 0.5 1.65 1.72 1.77 

 

 

Figure 6. Notch sensitivity versus notch root radius for three notch sizes.  
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different load ratio. The line plot represents the notch 
sensitivity factor calculated using the Neuber’s formula- 
tion [7] given in Equation (28) where a0 is a material con- 
stant taken to be 0.2 for Ti-6Al-4V [1]. The plot shows 
that the new approach and the closed-form solutions give 
more accurate result compared to the existing Neuber’s 
formulation. 

0

1

1

q
a



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6. Conclusion 

mework based on Weibull’s weakest
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