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ABSTRACT 

We evaluate quantum Otto, Diesel and Brayton cycles employing multiple-state 1D box system instead of ideal gas 
filled cylinder. The work and heat are extracted using the change in the expectation of Hamiltonian of the system which 
leads to the first law of thermodynamics to quantum system. The first law makes available to redefine the force which is 
in fact not well defined in a quantum mechanical system and then it is applied to define the quantum version of ther-
modynamic processes, i.e. isobaric, isovolume and adiabatic. As the results, the efficiency of quantum Otto engine de-
pends only on the compression ratio and will be higher than the efficiency of quantum Diesel which can decrease by the 
widening of expansion under isobaric process. The efficiency of quantum Brayton engine may reach maximum on cer-
tain combination between the wide of box under isobaric expansion and compression, under certain conditions. The 
amount of levels participated in the quantum heat engine system will potentially reduce the performance of the quantum 
heat cycles consisting isobaric process, but it can be resisted using isobaric process controller. 
 
Keywords: Quantum Heat Engine; Quantum Thermodynamic Processes; Quantum First Law of Thermodynamic 

1. Introduction 

Present technology allows for the probing and realization 
of quantum mechanical systems of mesoscopic and even 
macroscopic sizes, which can also be restricted to a rela- 
tively small number of energy states [1,2]. It is thus im- 
portant to study these quantum systems directly in rela- 
tion to the thermodynamics system. The interplay be- 
tween thermodynamics and quantum physics has been an 
interesting research topic since 1950s [3,4]. Studies of 
quantum thermodynamics not only promise important 
potential applications in technology and quantum infor- 
mation processing, but also bring new insights into some 
fundamental problems of thermodynamics, such as 
Maxwell’s demon and the universality of the second law 
[1,2,4,5]. Among all the studies about quantum thermo- 
dynamics, a central concern is to make quantum me- 
chanical extension of classical thermodynamic processes 
and cycles of quantum heat engines [5-9]. 

Quantum heat engines produce work using quantum 
matter as their working substance. The principle concep- 
tual difference between these and conventional heat en- 
gine is that in the quantum heat engine one is concerned 
with the discrete energy levels of particle [8]. Very re- 
cently considerable progress has been made in under- 
standing foundational aspects of thermodynamics by 

addressing a new class of questions: whether there exist 
additional fundamental limitations on thermal machines, 
arising specifically due to their size [10,11]. Further, the 
exotic properties of quantum nature of a working sub- 
stance can be expected to surpass the maximum limit on 
the amount of work done by a classical thermodynamics 
cycle and then improves the efficiency [12-15]. 

Some studies on quantum heat engine focused on the 
quantum analogue of classical Carnot engine [6,7]. The 
quantum Carnot engine, employing a single quantum- 
mechanical particle, as a working substance, is confined 
to a 1D box potential instead of gas filled cylinder. The 
cycle consists of isothermal and adiabatic quantum proc- 
esses that are close analogues to the corresponding clas- 
sical processes. By formulating 2-state quantum system, 
the efficiency is analogue for the classical Carnot effi- 
ciency [6]. The study of n-state of 1D box quantum Car- 
not engine has explored a phenomenon that the effi- 
ciency will be looser as an adding of the number of ei- 
gen-states included, but it is possible to resist the loss of 
efficiency by controlling the expansion of isothermal 
process [7]. If there are some difficulties to control the 
amount of eigen-state involved in the arrangement of the 
state of system of a quantum heat engine, the effort to 
resist the decreasing of the efficiency could be done by  
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studying its properties. 
It is important to characterize how the behavior other 

multiple-state 1D box heat engines, that is quantum Otto, 
Diesel and Brayton engines. There is an interesting thing 
to Diesel and Brayton cycles, they consist of isobaric 
process, so we must redefine “pressure” (force), which 
has not been challenged yet to participate in the previous 
studies of 1D box system quantum engine [6,7,16] and is 
in fact not well defined in a quantum mechanical system 
[3,17]. 

In this paper, as an attempt to have an overview of 1D 
system of quantum heat engines, we evaluate quantum 
Otto, Diesel and Brayton engines which classically have 
an ideal gas as their working substance. Different from 
the previous papers according to quantum Carnot engine 
1D system [6,7] and Otto like cycle for a two-level sys- 
tem [18], here we evaluate the multiple-state 1D system 
heat engines using the first law of thermodynamic to 
quantum system defined from statistical interpretation of 
measurement energy in quantum mechanics. By the first 
law, the force in the quantum mechanical system can be 
redefined phenomenologically and some thermodynamic 
processes, i.e. adiabatic, isobaric and isochoric, to 1D 
box system can be described well. This paper is organ- 
ized as follows: In Section 2, we redefined microscopi- 
cally force for a quantum system through the quantum 
version of the first law of thermodynamic, and we apply 
the force and the first law to describe the quantum ver- 
sion of quantum version of adiabatic, isobaric and iso- 
volume processes; In Section 3, we evaluate the quantum 
Otto, Diesel and Brayton engine, formulate their effi- 
ciencies and correspond between them. Section 4 con- 
tains the remarks and conclusions. 

2. The First Law of Thermodynamics to 
Quantum System 

2.1. 1D Box System 

We choose a quantum heat engines system, multiple- 
state 1D box system instead of ideal gas filled cylinder. 
1D case is an interesting object which quantum mechan- 
ics textbooks usually start with them to illustrate some 
non-classical effects of the theory. The simplest one- 
dimensional quantum mechanical system is a particle of 
mass m in region with potential is zero along L and oth- 
erwise is infinite [19]. The Schrodinger Equation is given 

2 2

2

d
 

2 d
V E

m x

    


.          (1) 

The potential energy that touches the walls is infinite 
and  in 0V  0 x L  . The infiniteness potential en-
sures the particle cannot in fact penetrate them and gives 
the boundary conditions    0 0L   . 

The boundary conditions and normalization require-

ment give us the discrete spectrum of eigenfunctions, 

 
1 2

2 π
sinn

n x
x

L L
        

   
.          (2) 

These eigenfunctions are associated with the eigen- 
energies 

2 2 2

2

π

2n

n

mL
 


.               (3) 

The state of system, described by a wave function 
 x , may be expanded in terms of an eigenfunctions 

set   n x , 

  n nn  x a x   ,            (4) 

na  can be called as coefficient expansion. If the states 
  and n  are normalized, the coefficients will have  

the normalization correction 
2

1n nn n
a P   . 

The quantum mechanical prescription for calculating 
the average of a dynamical observable in the state  x  
is written in the postulates. Specifically, for the energy 
we have the expectation value of Hamiltonian. If the 
probability to finding n  in a given measurement of 
energy is n , then the average energy over measure-P
ments in the box is given by the expression 

2ˆ
n n nn n

E H a P     .       (5) 

Here we have the interpretation of the square of  

modulus of coefficient , na
2

na  nP  is the probability  

that measuring energy finds the value n . So the energy 
of 1D system is 

2
2 2

2

2

π

2n nE a n
mL

 


.            (6) 

Here we assume, one of the walls, say the wall at x = L, 
is allowed to move an infinitesimal amount dL then the 
wave function  x , eigenfunctions  n x  and ei-
genenergies n  all can vary infinitesimally as function 
of L. As a consequence, the expectation value of Hamil-
tonian, Equation (6) also changes infinitesimally. 

2.2. The First Law of Thermodynamics, Force 
and Energy to Quantum System 

Force, in which has not been challenged in the previous 
studies of 1D box system quantum engine [6,7,17], is in 
fact not well defined in a quantum mechanical system 
[3,16]. Here, we redefine the force and energies of the 
system based on the phenomenological interpretation of 
the infinitesimally changing of the expectation value of 
Hamiltonian. 

The expectation value of Hamiltonian is the average 
energy over measurements of all members of the ensem-
ble, it can be just called as the energy of the system. Un-
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der an infinitesimal process, the infinitesimally changes 
in the energy of Equation (5) are given by 

d dn n n nn n
E P P d    .           (7) 

It is the statement of the first law of thermodynamic to 
quantum mechanical systems [1-3,16]. The two terms of 
Equation (7) tell us that there exist two fundamentally 
different ways of change of the energy of system. The 
first term represents the change of state occupation or 
probability  and the second term gives the change 
of energy levels 

d nP
d n . 

We evaluate this two terms phenomenologically. At 
first, under an adiabatic process, the adiabatic theorem is 
invoked to obtain that energy levels are modified without 
changing their occupational probability [20],  is in-
variant. The first law in Equation (7) will be 

nP

d n nn
E P d  .              (8) 

While classically, this no heat transfer process of 
adiabatic process will lead to use the change of internal 
energy only to do work W . According to 1D box, the 
volume decreases slowly from L to L-dL by application 
of an external force, so 

d dE F L  .                 (9) 

Substitusion of Equation (8) into Equation (9) gives us 
the ensemble average of force, 

d

d
n

n
n

F P
L


  .              (10) 

The ensemble average of force F is the average of nF  
over all the states represented in the ensemble [15]. It 
appears to introduce the macroscopic observable quantity 
of force or “pressure”, i.e., as a function of the microstate. 
Let amount of heat Q  can be supplied to the system, 
and the system does an amount of work W . By the 
principle of conservation energy, the infinitesimal change 
of the (internal) energy is then given by the first law as, 

dE Q W   .               (11) 

This change of energy  has also been given in 
Equation (7). It has been defined previously the change 
of energy levels 

dE

n  can be with the infinitesimally  
moving of the wall , the term L dn nn

P   will be  

related to the work done to the system. In other hand, the 
rearrangement of the system among the energy levels,  
which lead to  term, must therefore be related  dn nn

P
to the head supplied into the system, 

dn nn
P Q  .                (12) 

The situation has also defined been formally using 
quantum manometer model [16] which has results that 
the first (term) process of Equation (7) requires an ex-
plicit thermodynamic embedding, and the second (term) 

process has been shown to require what could be called a 
mechanical embedding. 

2.3. Quantum Version of Thermodynamics 
Processes 

Base on the force and the first law of thermodynamics to 
a quantum mechanics system, we can now describe some 
processes which are quantum analogues of classical 
thermodynamic processes. 

2.3.1. Adiabatic Process 
A classical adiabatic process can be formulated in terms 
of a microscopic quantum adiabatic process. Because 
quantum adiabatic processes proceed low enough such 
that the generic quantum adiabatic condition is satisfied, 
then the population distributions remain unchanged. 
There is no heat exchange in the process, but work can 
still be nonzero according to equation. A classical adia- 
batic process, however, does not necessarily require the 
occupation probabilities to be kept invariant. For exam- 
ple, when the process proceeds very fast, and the quan- 
tum adiabatic condition is not satisfied, internal excita- 
tions will likely occur, but there is no heat exchange be- 
tween the working substance and the external heat bath. 
This thermodynamics process is classical adiabatic but 
not quantum adiabatic [7]. Thus it can be verified that a 
classical adiabatic process includes, as a subset, a quan- 
tum adiabatic process; but the inverse is not valid [6]. 

In case, the internal energy is converted all into me- 
chanical energy, the first law will be, 

dE F Ld  .                 (13) 

We use an assumption that the initial state of the sys-
tem is a linear combination of n-eigen-states as stated in 
Equation (4). In this process, the size of the potential 
well changes as the moving wall moves. There is no 
transition between energy levels, it can be represented 
the absolute values of the expansion coefficient 

2
n na P  

is invariant. Using adiabatic process we can construct the 
force as, 

 d d

d d
n

n
n

E L E
F P

L L
              (14) 

Equation (14) has been well used in the previous quan- 
tum Carnot engine 1D system [6,7]. This expression of 
force d dF E L   is not a general expression of force 
according to quantum system, it is just special cases ac- 
cording to adiabatic and isothermal processes, and will 
be only well used for Carnot cycle [6,7]. 

The eigen-states  n x  and the corresponding en- 
ergy levels En, as the wall moves an infinitesimal amount 
dL, will be varying smoothly. Energy level does not in- 
dependent to the wide of wall L, as described in Figure 
1.  
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Figure 1. Under an adiabatic process, the energy levels and 
energy levels spacing decrease as the wall moves out. 
 
Each eigenvalue of energy En decreases as the piston 
moves out, so from Equations (3) and (5) we have the 
expectation value of Hamiltonian decreases as 

 
2 2

2
2

π

2nn
E L P n

mL
 

.             (15) 

The force exerted to the moving walls by the system, 
as stated in Equation (14) is given by 

2 2
2

3

π
n

n

F P n
mL

  
,                (16) 

in accordance with the formulation as shown in Equation 
(10). 

2.3.2. Isobaric Process 
Many energy transfer processes are taken place in close 
system at constant pressure. These processes are said to 
be an isobaric process. In contact with a heat bath, the 
first law of thermodynamics is stated in Equation (7) as 

n n
d dn n n nE P P d    . The amount of heat input 
can be predicted with 

dQ E W   ,              (17) 

which is used to change the internal energy and to do 
work under a constant force. 

According to 1D system, the quantity of pressure is 
played by force, so the force remains constant along the 
isobaric expansion or compression processes, 

d
Constant

d
n

nn
F P

L


   .          (18) 

Let us assume, initially, the system is in ground state, 

i , and appropriates with the force L L 2 2 3πi iF mL  . 
The heat input blows transitions between states, so the 
force will be 2 2 2 3πnn

F P n mL   . This constant 
force, isobaric, gives us information of the wide of wall 
after isobaric expansion or compression 

 3 2
i n

L L P n 

which will be maximum when all of the eigen-states lay 
on the highest state, or 

2 3
max iL n L

0

. 

2.3.3. Isovolume Process 
In an isovolume process, the system is placed in contact 
with a heat bath. Classically, the pressure p and the tem-
perature T are changing along this process. The constant 
volume assures no work along the process. 

A quantum isovolume process has similar properties to 
that of a classical isovolume process. The occupation 
probabilities vary along a quantum isovolume process by 
the heat absorbed or released. The system changes at 
constant volume, dL = 0 (for 1D system), thus no work is 
done by or into the system . The heat input all 
will be used to raise the energy of the system so the first 
law can be stated as, 

dW 

dQ E  .                 (20) 

The internal energy goes up by the heat added into the 
system. 

3. Quantum Heat Engine 

To study the conversion of heat into work, we must have 
at hand a process, or series of processes, by means of 
which such a conversion may continue indefinitely 
without involving any resulting changes in the state of 
the system. The series of processes in which a system is 
brought back to its initial state, that is, a cycle. Each of 
the processes that constitute a cycle involves either the 
performance of work or a flow of heat between the sys- 
tem and its surroundings, which consist of a heat reser- 
voir at a higher temperature than the system and a heat 
reservoir at a lower temperature than the system [14]. 
Cyclic heat engines play an extraordinarily large role in 
technique. A large part of the energy used in daily life is 
produced in such engines, for example in nuclear power 
plants, or combustion engines [15]. 

Starting with a ground-state of 1D system of width L1, 
the state is 

1 1

2 π
sini x

L L



 

 


 .             (21) 

It associates with the energy, 

2 2

2
1

π

2
iE

mL



.               (22) 

The initial state and energy Equations (21) and (22) 
will be changed quasistatically to go through the quan- 
tum cycles returning to these state and energy. 

In the following study, we apply the quantum version 
of the first law, force, energy and thermodynamic proc- 
esses which have been defined in the section 2 to evalu- 
ate the behavior of quantum Otto, Diesel and Brayton n ,            (19) 
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cycles and formulate their efficiencies. We consider a 
case of system with n-eigen-states contributed to the 
wave function in the 1D box. 

3.1. Quantum Otto Cycle 

Otto engine is sequentially made up adiabatic compres-
sion, isovolume, adiabatic expansion and return to its 
initial state after undergoing the isovolume. 

1D box quantum Otto engine operates under a cycle 
which is a quantum mechanical analogue to the classical 
Otto cycle [14,15,21,22]. Figure 2 shows the 1D quan- 
tum Otto cycle on FL diagram. At first, the wall is com- 
pressed adiabatically 1 2 , the occupation probabili- 
ties remain constant. Amount of heat 

L L
HQ  inputs into 

the system, raising the energy and makes change in the 
occupation probability and the force goes up while the 
volume doesn’t change. Next the high force of the sys- 
tem pushes the wall outward  3 4 ; ,L L L L L  3L 2 4 1 , 
expanding adiabatically and producing the work. Finally, 
amount of heat called LQ  is expelled under isovolume 
process and the system gets a lowering force, the system 
expels heat but does not do work until achieves its initial 
condition (Equations (23) and (24)). 

The net work for a cycle is stated as, 

2 3

1 2

4 1

3 4

1 2 2 3

3 4 4 1

d d

d d

L L

net L L

L L

L L

W F L F L

F L F

 

 

 

 

 

  L

dL

.              (23) 

According to Otto cycle, the net work is rendered by 
the quantum adiabatic compression and adiabatic expan-
sion 

2 4

1 3
1 2 3 4d

L L

O L L
W F L F    .             (24) 

Substitution Equation (18) into Equation (24) gives us 
the expression of the Otto cycle net work, 

2

2 22 2
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2
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π
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W P n

L LmL
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 

nP n





. (25) 

 
F 

QH 

QL

L
L2 = L3 L1 = L4  

Figure 2. FL diagram 1D box Otto cycle. 

The width of 1D box parameter does not vary when 
the system is in contact with either bath. The parameter 
varies only during the adiabatic transitions from one bath 
to the other bath. This cycle may deliver work or receive 
work for appropriate choice of the parameters. 

The heat inputs at a constant volume , and it 
can be obtained by the first law (Equation (20)), 

2  3

2 2
2

3 2 2
12

π
1

2HO n
n

Q E E P n
mL





    
 




3

.      (26) 

The efficiency of this quantum Otto engine is the net 
work producer during the cycle, Equation (25) divided by 
the heat absorbed during the isovolume of process 

 Equation (26). Using Equations (25) and (26), 
we have 
2 

2

2

1

1O

L

L


 
   

 
,             (27) 

where 1 2L L  is the compression ratio. We can therefore 
eliminate the compression in Equation (27) in favor of 
the energy of system at the ends of either adiabatic proc-
ess, 

1

2

1O

E

E
   .                (28) 

The obvious way to make the efficiency more efficient 
would be to use a higher compression ratio. This result 
corresponds to the classical Otto efficiency which is de-
termined as a temperature ratio of the cold and hot baths 

classic 1 C HT T    [19]. 

3.2. Quantum Diesel Cycle 

A Diesel cycle is constructed out of an adiabatic com-
pression and an adiabatic expansion interspersed between 
an isobaric compression and isovolume. The 1D box 
system quantum diesel cycle analogue to its classical 
cycle can be described in FL diagram of Figure 3. Heat 
flows into the cycle through the expansion under con-
stant force and it flows back out through the isovolume 
process. 
 

F

QH

QL

L
L2 L1 = L4L3  

Figure 3. FL diagram of 1D box Diesel cycle. 
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Applying the first law to the closed system to each of 
the cycle yields the net work 

3 22 2
3 3 2

2 2
22 2 1

π
3 3

2D

L L L
W

LmL L L L

  
      


2
1





.      (29) 

The amount of heat taken in the system at constant 
force during process  as given by the first law, 
Equation (19), is 

2 3

2 2
3

2
22

π
3 3

2HD

L
Q

LmL


 

 

 
              (30) 

The diesel efficiency can be obtained from Equations 
(29) and (30), 

 
 

2 3

3 22

1 3 2

11
1

3 1D

L LL

L L L


  
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 .          (31) 

Equation (31) can be expressed as  

  2 31 1 1 3 1D c c          

where 1 2L L   is compression ratio and 3 2c L L   
is cut-off ratio. The efficiency of quantum Diesel engine 
decreases by the larger of cut off ratio [23]. When, 

2 constant, the decreasing of efficiency by the widening 
of the wall under isobaric expansion can be shown in 
Figure 4. 

L

Our multiple-state system apprises a special character 
under isobaric process contacting with a reservoir. It is 
expressed in Equation (21), more eigen-states construct- 
ing the state of system, the wall could be dilated more 
and the cut off ratio will go up. The increasing of cut-off 
ratio will tend to decrease the efficiency. 

A comparison of Diesel efficiency D  and Otto effi- 
ciency O  shows that operating at the same compres- 
sion ratio the Diesel efficiency, Equation (31), is always 
 

ηO 

 

L3= L2 
L3

ηD 

 

Figure 4. The Diesel efficiency will decrease by the increas-
ing of the isobaric expansion , on the constant of and 

. 
4L 1L

2L

less than Otto cycle, Equation (27), because the square 
bracket factor of Equation (31) is always larger than one. 
This Diesel efficiency will be as close to the quantum 
Otto efficiency as desired by making the cut off ratio 
close to one. 

3.3. Quantum Brayton Cycle 

Brayton engine is constructed with adiabatic compres-
sion, isobaric expansion, adiabatic expansion and iso-
baric compression. The adiabatic processes, as in ther-
modynamics, are impermeable to heat; heat flows into 
the loop through the left expanding isobaric process and 
some of it flows back out through the isovolume process 
for Brayton. The 1D system Brayton cycle is described in 
Figure 5. 

The force and energy in all stages of the cycle give us 
the total work, 

32 22 2
3 34 2 2

2 3 2
22 1 2 4

π
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
2
1

.   (32) 

While, the heat transfered into the system using the 
first law can be obtained with, 
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3

2
22

π
3 3

2HB

L
Q

LmL

 
 

 


 .          (33) 

Then we have the efficiency of the quantum Brayton 
in 

     
 

2 32

1 4 3 2 4 12

1 3 2

21
1

3 1

B

L L L L L LL

L L L

 

3  



       

.  (34) 

The efficiency of quantum Brayton engine varies on 
the compression ratio, and the both of expansion and 
compression box under isobaric processes. For fixed 
values of the compression ratio 1 2L L  , the behavior 
of quantum Brayton efficiency can be shown by Figure 6. 
It reaches maximum on certain combination between the 
wide of box under isobaric expansion 3L and adiabatic 
expansion . In order to form a cycle process, the ratio  4L
 

F

QH

QL 
L

L2 L3 L1 L4  

Figure 5. FL diagram of 1D box Brayton cycle. 
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L3 

L4

ηB 

 

Figure 6. The efficiency of quantum Brayton engine reaches 
maximum on certain combination of  and , on the 

constant of  and . 
3L 4L

1L 2L

 
of isobaric compression 4 1L L  relates to the probability 
along isobaric expansion process, as stated in Equation 
(19), 

 1 32
3 2 nn

L L P n  .              (35) 

The amount of levels participated in multiple-state 
quantum system potentially reduces the performance of 
our quantum Brayton engine, but it can be resisted using 
isobaric process controlling. 

4. Conclusions and Remark 

It has been shown that the efficiencies of 1D quantum 
heat engines are similar with classical ideal gas heat en-
gines using the expectation value of Hamiltonian, an en-
semble average taken over the multiple copies of the 
system, as the temperature, actually can be measured in 
energy units [24]. The multiple-state 1D box quantum 
Otto engine efficiency depends on the compression ratio 
which is the initial and final internal energy ratio of 
adiabatic compression. The quantum Diesel efficiency 
depends on the compression ratio and cut off ratio. It will 
decrease by the increasing of the cut off ratio which is 
1D box elongation ratio under isobaric expansion. 
Operating at the same compression ratio, the Diesel 
efficiency is always less than Otto cycle. The work of 1D 
Brayton engine can be looser not only by elongation 
under isobaric expansion but also by the contraction of 
isobaric compression. Operating at the same compression 
ratio, the quantum Brayton efficiency will be less than 
Otto and Diesel cycle. 

The multiple-state quantum heat engines behave that 
more eigen-states of the state will reduce the perform- 
ance of the quantum heat engine. This result presents a 
confirmation that for the higher state quantum heat en- 

gine the work to be looser than that for lower sate system 
under certain condition [7,9]. The more eigen-states par- 
ticipated in the state can increase the isobaric expansion 
and vice versa for isobaric compression and it will de- 
crease the efficiency. A controlling of isobaric processes 
should be done in order to achieve a maximum work, 
because the system must be brought to execute a reversi- 
ble cyclic process. 

The efficiency enhancement of our multiple-state 
quantum heat engines can be done by increasing com- 
pression ratio and controlling isobaric processes. 
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