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ABSTRACT 

This analysis formulates an approach for converting minimax LQ (linear-quadratic) tracking problems into LQ regula- 
tor designs, and develops a Matlab application program to calculate an H-infinity robust control for discrete-time sys- 
tems with perfect state measurements. It uses simulations to explore examples in financial asset decisions and utility 
input purchasing, in order to demonstrate the method. The user is allowed to choose the parameters, and the program 
computes the generalized Riccati Equation conditions for the existence of a saddle-point solution. Given that it exists, 
the program computes a minimax solution to the linear quadratic (LQ) soft-constrained game with constant coefficients 
for a general scalar model, and also to a class of matrix systems. The user can set the bound to achieve disturbance at- 
tenuation. 
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1. Introduction 

When addressing any economic, finance, or engineering 
problem where there is uncertainty, there must be some 
approaches for modeling the disturbances. The use of 
H∞-optimal control modeling was the primary subject of 
control systems research in the field of engineering in the 
1980s and 1990s. Many of the results of the research for 
continuous and discrete time systems with different in- 
formation structures are presented in [1]. H∞-control, 
which is a minimax approach, seeks to achieve a robust 
design by minimizing a performance index under the 
worst possible disturbances, where the disturbances 
maximize that same performance index. In this case, ro- 
bust means guaranteed performance for any disturbance 
sequence that satisfies the H∞-norm bound. 

This is an alternative to the approaches that were pri- 
marily advanced in the 1970s. Most of that research in- 
volved the linear-quadratic-Gaussian (LQG) approach 
where the disturbances were treated as random and mod- 
eled with a Gaussian distribution [2,3], or with adaptive 
control, where the unknown disturbances are learned 
through feedback and feed forward loops [4]. The prob- 
lem with these probabilistic approaches, such as the LQG, 
is that minimizing the expected value of a performance 
index leads to maximum system performance in the ab- 

sence of misspecification, but it leads to poor perform- 
ance and instability under small or large misspecifica- 
tions [5]. Hence, there is a need for robust design. 

In contrast to its widespread use in the engineering 
area, H∞-control has not been widely applied in econom- 
ics and finance. One of the problems is that the system 
must be formulated properly with an appropriately accu- 
rate model of the system; otherwise, optimizing the 
wrong controller makes performance worse instead of 
better. Another problem with applying the H∞-approach 
to macroeconomic problems is that many analyses model 
the interdependent prices and agent’s decisions sepa- 
rately, so that the existing H∞-methods cannot be applied 
[5]. Another problem has been the modeling and compu- 
tational difficulty. 

There have been some economic applications, such as 
[6-8]. The robust method in [9] has been widely used in 
the area of macroeconomics. However, that method con- 
centrates on applying entropy as a distance measure to 
bound uncertainty. Its examination of H∞-optimal control 
is limited to the frequency domain where it can be com- 
pared to the entropy approach to robust control. 

The model in [5] applies the H∞-control approach to a 
model where agents seek robust consumption and portfo- 
lio strategies to deal with misspecifications, rather than 
misperceptions. He finds that H∞-forecasts are more sen- 
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sitive to news than rational expectation forecasts, since 
robust agents behave as if they misperceive shocks to 
have more persistence than they actually do. The model 
in [5] also provides an explanation for some well-known 
asset pricing anomalies, including the predictability of 
excess returns, excess volatility, and the equity-premium 
puzzle. The analysis in [5] performs simulations that de- 
monstrate that when robustness is high, prices are more 
volatile than dividends. 

These findings add further impetus for the use of a ro- 
bust approach in many areas of finance and economics. 
For example, it would be useful in asset and options pric- 
ing in financial markets, where common approaches, 
such as the Black-Scholes methodology, are sensitive to 
assumptions regarding the statistical distribution of the 
disturbances and to extreme price changes. However, [10] 
cautions that robust control does not imply more cautious 
responses than those obtained under an uncertain model. 
They can be more aggressive, as in the optimal monetary 
policy approaches of [11], or they can respond less ag- 
gressively to incoming news, as in [12]. 

The purpose of this paper is to model economic and 
financial applications using a discrete-time H∞-approach, 
and to develop Matlab software programs that allow us- 
ers to simulate optimal solutions under a flexible choice 
of system parameters. The paper uses the minimax opti- 
mization approach to some fundamental economic prob- 
lems where it has not previously been considered, and 
then compares the simulated solutions to those solutions 
that would have been obtained under deterministic opti- 
mal control strategies with varying parameters and ter- 
minal conditions. We develop a matrix application and a 
scalar application program. These programs allow the 
analyst to make better decisions by exploring the worst- 
case disturbance strategy in conjunction with other ap- 
proaches to dynamic systems that contain disturbances 
and uncertainty. 

2. Model Derivation 

This analysis considers the discrete-time minimax con- 
troller design problem with perfect state measurements. 
The problem is formulated in expression (1) as a soft- 
constrained linear-quadratic (LQ) game, which is a gen- 
eralized version of that in [1]. The controller u is the 
minimizing player and the disturbance term w is the 
maximizing player. 

  1 1

1

minmax , T
K f K

u w

K
T T T
k k k k k k k k

k

J u w x Q x

x Q x u R u rw w

  





    
          (1) 

subject to 

     1 ; 1k k k k k k k

where the initial value of the state vector at the initial 
time 1k   is fixed at   11x x , and 2 0r   ; 

; 0kR  fQ , ; 0kQ  1, 2, ,k K  . 
The sizes of the matrices and vectors are as follows: 

, ,f k kQ Q A  are n n ; k  is ;  is R m m kB n m ; 
 is kD n p ; kx  is n 1 ;  is ;  is k ku 1m u 1p  

First, consider an open-loop information structure. As 
shown in [13], and later applied in [1], the game admits a 
unique saddle-point solution trajectory  * * *, ,k k kx u w  if 
and only if 

1 0,  1, 2, ,T
k k krI D S D k K    ;            (3) 

where  ,  1,kS k k , is computed by the Riccati Equa- 
tion expressed in Equation (4). 

1

1

1 1

 ;1

;

T
k k k k k

T T T
k k k k k k k k k

k f

S Q A S A

1A S D rI D S D D S A

S Q





 



 

   


    (4) 

Assuming that the condition given in (3) has been met, 
the solution trajectory is found as follows. Define the 
recursive sequence of matrices kM  and  ,  1,k k k  , 
where k  is invertible, as 

1
1 1;  T

k k k k k k k fM Q A M A M Q
     ;     (5) 

and 

 1
1

T T
k k k k kI B B r D D M

    k          (6) 

Equations (5) and (6) can also be combined so that 
they can equivalently be expressed by Equation (7) as 

  11 1
1

1

;  T T T
k k k k k k k k k

k f

M Q A M B B r D D A

M Q

 




   


  (7) 

The unique saddle-point optimal control policy is 
given by 

*
1

T
k k k k ku B M A x

   1 *
k

*
k

1 1

            (8) 

The unique saddle-point worst-case disturbance tra- 
jectory is 

* 1 1
1

T
k k k k kw r D M A x 

            (9) 

and the state trajectory is 

* 1 * *
1 ;k k k kx A x x x
    ;        (10) 

The resulting saddle-point value of the game is calcu- 
lated as 

 *
1 1 1, TJ u w x M x               (11) 

1x A x B u D w x x            (2) 

Next, consider the case where both players have access 
to closed-loop state information with memory. Reference 
[1] shows that a unique feedback saddle-point solution 
exists if, and only if, 
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1 0,   1, 2, ,T
k k kr I D M D k K         (12) 

If the condition in (12) is satisfied, then the matrices 
 ,  1,k k k  , are invertible, and the unique saddle-point 

control, disturbance, and state trajectories are given by 
*

1
T

k k k k ku B M A x
   1

k

k

1 1

           (13) 

* 1 1
1

T
k k k k kw r D M A x 

            (14) 

* 1 * *
1 ;k k k kx A x x x
              (15) 

The saddle-point value of the game under closed-loop 
information is given by Equation (11), since it is the 
same as it was under open-loop information. If the matrix 
given by Equation (12) is not positive definite, and thus 
has one or more negative eigenvalues, then the game 
does not have a saddle-point solution, and its upper value 
is unbounded [1]. 

For disturbance attenuation, the value    is chosen 
for  , where , such that 2 0r      is the infimum, 
i.e., the smallest value of   that still allows for a sad-
dle-point solution of the game. Expressions (3), (7), and 
(12) show that   must be large enough to meet the 
conditions for the existence of a solution. Disturbance 
attenuation uses the minimum for   that will satisfy 
these conditions. The Matlab program developed in this 
paper allows the user the choice to input positive values 
of 2r  , and will test to see whether the saddle-point 
conditions are met for the user’s chosen value of 2r  . 
Thus, the user can choose any value of 2r   that is 
large enough to satisfy these conditions, and can then 
choose a value that is arbitrarily close to the infimum of 
these values for disturbance attenuation. 

Note that if the conditions in (3), (7), and (12) given 
above are satisfied, then the solution to the soft-con- 
strained game defined in Equations (1) and (2) is unique 
and global since the game is strictly convex in u and 
strictly concave in w, which is proven in [1]. The com- 
puter program developed here gives the user an error 
message if the theorem’s conditions are not satisfied. 
Thus, the model will not allow the user to generate simu- 
lations in situations where the optimal (global) saddle- 
point solution does not exist in the soft-constrained LQ 
game. The value of 2r   must be large enough to ad- 
mit a solution (if a solution exists) that will satisfy the 
global optimum saddle-point condition. There is no claim 
that this method extends to problems that are not strictly 
convex-concave, which cannot occur under the restricted 
LQ specification used in this model, given that the sad- 
dle-point solution conditions are satisfied. The global 
unique solution will be obtained in all cases if there is a 
value of the disturbance attenuation parameter that al- 
lows for a solution to the saddle-point condition matrices. 

3. Application Example 1: Financial Assets 

Consider a modified form of the control problem adapted 

from [14,15]. Suppose that an investor deposits k  dol- 
lars at the beginning of year k into a bank that pays an 
annually compounded interest rate of k . Let 

u

1,ki x  be 
the account balance at the ending instant of year , 
which is the beginning instant of year k before any new 
deposits or withdrawals are made. The state Equation is 

–1k

   1, 1 1,1 1k k k k kx i x i u              (16) 

Let 7%ki  , and assume that the initial balance in the 
account is zero, so that 1,1 . Suppose that the inves- 
tor’s goal is to achieve a balance of $100,000 at the end 
of the 10th year, i.e., the beginning of the 11th year, so 
that 

0x 

1 11K   , and 1,11 $100,000x  . 
One strategy would be to deposit an initial amount of 

1 $50834.93u  , and then let this grow to a balance of 
$100,000 at the end of the tenth year, as shown in Table 
1. In this case, the control variable deposit amounts are 

2 3 10 $0uu u    . Unfortunately, many investors 
would not possess the large initial deposit that would be 
required. 

As an alternative, the investor could follow an optimal 
control strategy where the performance index is given by 

2
  1, 1

1

1
min ; is fixed

2

K

k k K
u k

J R u x 


  ;      (17) 

In this fixed terminal state case, the investor seeks to 
minimize the loss function in (17) subject to the state 
Equation 

1, 1 1,k k kx ax bu             (18) 

Using Equation (16), the parameters in Equation (18)  

 
Table 1. Deterministic control with fixed final state. 

Lump-Sum Deposit  Optimal Control Strategy 

k u x1,k k u x1,k 

1 $ 50834.93 $ - 1 $ 8675.70 $ - 

2 $ - $ 54393.38 2 $ 8108.13 $ 9283.00 

3 $ - $ 58200.91 3 $ 7577.69 $ 18608.51

4 $ - $ 62274.98 4 $ 7081.95 $ 28019.23

5 $ - $ 66634.22 5 $ 6618.65 $ 37558.27

6 $ - $ 71298.62 6 $ 6185.65 $ 47269.30

7 $ - $ 76289.52 7 $ 5780.98 $ 57196.80

8 $ - $ 81629.79 8 $ 5402.79 $ 67386.23

9 $ - $ 87343.87 9 $ 5049.34 $ 77884.25

10 $ - $ 93457.95 10 $ 4719.01 $ 88738.94

11  $ 100000.00 11   $ 100,000.00

a. a = 1.07, b = 1.07, D = 1, K = 10, R = 1, Qk = 0, x1 = 0, xK+1 = 
$100000.00. 
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are . Let the interest rate be fixed, and let 
the control parameter weight be fixed so that k

    1a b i   
R R  

for all . The optimal control rule can be 
written as 

1,  2,k  , K

 
   

2

*
1, 1 02

1

1
K K k

k KK

a
u x a x

b a





 


a      (19) 

A more flexible situation would allow the investor to 
have a free terminal state. Suppose that the investor is 
interested in optimally tracking a final account balance of 
$100,000, but that this final value in the account at the 
end of the tenth year, i.e., the beginning instant of the 
11th year, is variable depending on an optimal perform- 
ance index. Rather than using the index in Equation (17), 
the investor’s objective is now to minimize the expres- 
sion in (20) subject to Equation (18). 

 2* 2
1, 1 1, 1

1

1 1
min

2 2

K

K K
u k

f k kJ Q x x R u 


    ,     (20) 

where 1, 1K  is free; . The solution to 
the optimal LQ tracking problem is given by 

x 
*
1, 1 $100,000Kx  

1,k k k ku K x g v   k                 (21) 

where the recursive Equations are 

2

*
1 1 1, 1

1
1

;  ;  

;  ;

K f K f K

k
k k k k

k

S Q v Q x

abS
h R b S K

h

  




 

  
        (22) 

1

 1

;  ;

; ;

k k k k

k k k k
k

c a bK S ac S

b
v c v g

h





  

 

k

 

Table 2 shows the simulations of the tracking problem 
for different parameter values of fQ , where the control 
weight is constant at  for all k. 1kR 

Next, consider an altered form of this problem. Sup- 
pose that an investor begins to purchase a stock, and 
wishes to grow the value of the portfolio to $100,000 by 
the ending instant of the 10th year, i.e. the beginning in- 
stant of year 11. Unlike the bank deposit, the value of the 
stock held in the account could increase or decrease. One 
option would be to model the problem as a free final state, 
linear-quadratic Gaussian (LQG), where the stock value 
fluctuations are random errors. This would provide an 
optimal feedback control strategy  for the stock pur- 
chase amount in each period. With perfect state informa- 
tion, the feedback control rule would parallel the above 
tracking problem, where the actual value of the account 
balance 1,k

*
ku

x  would be used in each period, rather than 
the deterministic, non-stochastic values in the above 
simulation. 

Another way of obtaining insight is to consider a 
worst-case design approach, and formulate the problem  

Table 2. Deterministic control with free final state. 

Optimal Tracking Strategy:  
Qf = 0.50 

 
Optimal Tracking Strategy: 

Qf = 5.0 

k u x1,k k u x1,k 

1 $ 7972.48 $ - 1 $ 8599.84 $ - 

2 $ 7450.92 $ 8530.55 2 $ 8037.24 $ 9201.83

3 $ 6963.47 $ 17100.17 3 $ 7511.44 $ 18445.80

4 $ 6507.92 $ 25748.10 4 $ 7020.03 $ 27774.25

5 $ 6082.17 $ 34513.94 5 $ 6560.78 $ 37229.88

6 $ 5684.27 $ 43437.84 6 $ 6131.57 $ 46856.01

7 $ 5312.40 $ 52560.65 7 $ 5730.44 $ 56696.70

8 $ 4964.86 $ 61924.17 8 $ 5355.55 $ 66797.04

9 $ 4640.06 $ 71571.26 9 $ 5005.19 $ 77203.27

10 $ 4336.50 $ 81546.11 10 $ 4677.74 $ 87963.05

11  $ 91894.39 11   $ 99125.66

a. a = 1.07, b = 1.07, D = 1, K = 10, R = 1, Qk = 0, x1 = 0, x*K+1 = 
$100000.00. 

 
through the H∞-optimal control methods discussed above. 
Let k be a disturbance term that represents the change 
in the value of the stock held in the account during period 
k. Let 3,k

w

x  denote the target amount in the account at 
time instant k that investor is tracking, and let 3,kx  be 
the difference between the actual and the desired value of 
the stock held in the account at time instant k. This is also 
a LQ tracking problem, and can be converted into a LQ 
regulator-type of H∞-optimal control problem by writing 
Equations (1) and (2) as follows: 

  1 1

2 2

1

minmax , T
K f K

u w

K
T
k k k k k

k

J u w x Q x

x Q x u rw

  





    
         (23) 

where, for  1,2, ,k K  , 

2

3,

3, 3,

3,

0 0 0

0;  0 0 0 ,  

0 0

0 0 0

0 0 0 ,  0,  0

0 0

f

f f

k

f

k

r Q

q

Q q

q


 
     
  

 
 

 q   
  

 

subject to 

1k k k k k k kx A x B u D w              (24) 

where 
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1,

2,

3,

1 0 0

 0 1 0

1 1 0

1

0  0

1 0

k k

k k k

k k

k k

k k

k

x i

x x A

x i

i d

B D

i

   
       
      
   

       
      

 

K

K

0

 






 

Assume that the investor starts with a zero balance and 
isonly concerned with getting near the final target 
amount of $100,000 at the final time at the end of 10 
years, which is the beginning of year 11. Also assume 
that there is no intermediate state weighting, so that 

3,  for all . As in the problem scenario 
above, assume that the long-run average rate of return is 
constant at k , and that the disturbance terms rep- 
resent the short-term loss in the stock value that occurs 
over period k, which causes the portfolio value to decline. 
The program allows the user to set the values for all pa- 
rameters, and for the initial values in the state vector. For 
this example, let  for all , so that the 
disturbance directly represents the loss in the value of the 
account due to the fall in the stock’s value over the pe- 
riod. In this case, the coefficient matrices are constant: 

0kq   1, ,k  

7%

1kd 

i 

 1, ,k  

1

0 1.07 0

100,000  0 1 0

100,000 1.07 1 0

1.07 1

0  0

1.07 0
k k

x A

B D

  
     
     
   
       
      

 

The investor is seeking to drive the shortfall in the 
stock account from an initial value of 3,1  
to 3,11  at the end of the time 10-year time horizon. 
The more important is the goal of having a portfolio 
value of $100,000 at the end of 10 years, which means a 
reaching an account balance deficiency of 3,11

$100,000x  

$0x

$0x 

 , the 
higher will be the weight expressed in the parameter 

3, fq . The optimally simulated values using a closed-loop 
information scheme are given in Table 3. 

Reference [16] uses the golden ratio as a search algo- 
rithm to compute the optimal bound for slow and fast 
subsystems in an H∞-suboptimal perturbation model. 
Reference [1] also calculates a golden ratio disturbance 
optimal attenuation value in a scalar model with imper- 
fect information model where all of the performance in- 
dex weights are unity, and all variables in the state and 
measurement Equations have unit coefficients. In order 
to be consistent with these previous studies, the simulations 
in Table 3 follow this choice of relative weighting design, 
and thus use 3, , the golden ratio, as the ratio 
between the parameters on the final state and control  

 1.618fq 

Table 3. Minimax control with higher risk exposure. 

k u w x 1 k x 2 k x 3 k 

1 $9062.50 −$4234.80 $0.00 $100000.00 −$100000.00

2 $9092.90 −$4249.00 $5460.00 $100000.00 −$90300.00

3 $9185.20 −$4292.10 $11320.00 $100000.00 −$84430.00

4 $9356.10 −$4372.00 $17650.00 $100000.00 −$78050.00

5 $9632.90 −$4501.40 $24530.00 $100000.00 −$71100.00

6 $10062.00 −$4701.70 $32050.00 $100000.00 −$63450.00

7 $10728.00 −$5013.30 $40360.00 $100000.00 −$54940.00

8 $11816.00 −$5251.70 $49650.00 $100000.00 −$45340.00

9 $13813.00 −$6454.70 $60250.00 $100000.00 −$34230.00

10 $18736.00 $0.00 $72790.00 $100000.00 −$20750.00

11   $97930.00 $100000.00 −$2070.00

a. q3,f = 1.618, d = 1, r = 2. 

 
variables in the performance index. Given these parame- 
ters, the disturbance attenuation value of r = 2 is the 
lowest whole number value for r that admits a minimax 
saddle-point solution. 

The results in the previous example that were shown in 
Table 3 can be compared to an alternative case. Suppose 
that the investor decides to purchase shares in mutual 
fund that contained both stocks and bonds, and that the 
mutual fund has a much lower variance, or volatility, 
around its expected mean growth rate. This less-risky 
alternative provides an intermediate case between the 
examples in Tables 2 and 3. Assume that the rate of re- 
turn is still constant at constant at , but that 7%ki 

0.5kd   for all  1, ,k K 

 1.fq

, so that the potential loss in 
the value due to the disturbance is decreased. Further, 
assume that the final state weight in the performance 
index is increased from  to 3, 3,618 3.0fq  . 

In Table 4, the annual contributions in the k  again 
have the decreasing pattern over time that was obtained 
in the deterministic case of Table 2. However, the mini- 
max control investment strategy in Table 4 is still more 
aggressive and requires higher contributions than in the 
deterministic case. When comparing the optimal two 
minimax designs in Tables 3 and 4, note that the optimal 
control annual contributions are much higher in Table 3 
when the risk exposure is greater. And, when the penalty 
weight on the final deviation of the state variable from its 
target is increased to 3,

u

3.0fq  , the final account bal- 
ance is closer to the target amount in Table 4 than it was 
in Table 3. 

Note that the authors have run many sensitivity simu- 
lations with various values for all of the parameters, and 
the performance index weights above can be chosen  
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Table 4. Minimax control with lower risk exposure. 

k u w x1k x2k x3k 

1 $8699.90 −$2032.70 $0.00 $100000.00 −$100000.00

2 $8275.30 −$1933.50 $8290.00 $100000.00 −$90690.00

3 $7885.70 −$1842.50 $16760.00 $100000.00 −$82270.00

4 $7531.40 −$1759.70 $25450.00 $100000.00 −$73630.00

5 $7213.70 −$1685.50 $34410.00 $100000.00 −$64710.00

6 $6936.10 −$1620.60 $43700.00 $100000.00 −$55460.00

7 $6706.10 −$1566.80 $53370.00 $100000.00 −$45820.00

8 $6540.40 −$1528.10 $63490.00 $100000.00 −$35720.00

9 $6482.50 −$1514.60 $74170.00 $100000.00 −$25060.00

10 $6696.40 $0.00 $85540.00 $100000.00 −$13700.00

11   $98700.00 $100000.00 −$1300.00 

a. q3,f = 3, d = 0.5, r = 2. 

 
arbitrarily. The Matlab program is included in the Ap- 
pendix, and users can run their own simulations. Portions 
of the program can be modified to handle other similar 
applications in economics and finance, and the authors 
have done this to handle other types of LQ tracking prob- 
lems with higher dimensional matrices. Due to brevity 
and space considerations, only the simulations in Tables 
3 and 4 are reported here. Comparing these results to 
those in Table 2 shows that the investor will optimally 
follow a strategy that requires a higher dollar input in 
each period in order to counteract the short-term distur- 
bances when the stock or bundled portfolio underper- 
forms its trend growth. 

The minimax strategy can be employed in different 
ways. The investor could follow the simulated H∞-opti- 
mal control strategy when purchasing stock in each pe- 
riod k. Alternatively, the investor could treat the distur- 
bance value losses as the shortfalls that need to be cov-
ered through additional deposits. These shortfalls could 
be added to the control inputs, i.e., the investment 
amounts in each respective period k, within the previous 
deterministic LQ-tracking problem. The investor could 
also design a control rule that used a weighted average of 
the controls, or disturbances, from standard LQ-tracker 
and the H∞-optimal control analysis in order compromise 
between the two approaches. All of these options allow 
the user, or investor, to evaluate and incorporate robust- 
ness considerations when formulating the feedback con- 
trol investment, and to develop a desired hedge strategy. 

4. Application Example 2: Input Purchasing 

Consider the purchasing agent for a retail electricity sup- 
plier in a deregulated market. Wholesale electricity gen- 

eration markets are generally characterized by fixed- 
price forward contracts, where the delivery price of some 
fixed quantity of electricity is determined during some 
period in advance of the hour of delivery, or transmission. 
Wholesale electricity sellers have an incentive to sign 
contracts in order to ensure demand, gain advantage over 
competitors, and deter market entry. Purchasers will sign 
contracts in order to reduce uncertainty over prices and 
quantities. Note that this analysis actually applies to any 
industry where inputs are commonly purchased through 
advanced forward contracts. This also includes electricity 
generator firms who are purchasing natural gas and coal 
inputs in the forward market to hedge against unexpected 
increases in input prices. 

Assume that the demand for electricity for the retail 
utility firm has been growing at a constant average rate 
of i per period, so that 1A i  . Also assume that the 
retail plant manager would like to sign forward contracts 
to satisfy the firm’s entire predicted demand. This can be 
modeled by a scalar version of Equations (1) and (2). Let 

k  be the control variable that denotes net change in the 
forward contract position from the previous period. In 
other words, it is the quantity of electricity (measured in 
megawatt hours) that the plant manager purchases in the 
forward market that is in addition to the previous forward 
purchase amount in period k under a fixed-price forward 
contract to be delivered in period . Let k

u

1k  x  be the 
difference between the retail demand for electricity 
(measured in megawatt hours) during period k, and the 
total amount of fix-price forward contracts that are al- 
ready in place in period k. Thus, the plant manager is 
seeking to steer the final value of the state variable to 

1 0Kx   . Since each quantity purchased forward reduces 
the residual excess demand, B will be negative. For the 
simulations, let B = −1, and let D = 1 since the distur- 
bance term  represents unanticipated excess de-
mand. 

kw

This problem lends itself to robust considerations, 
since the input purchaser will face exposure to poten- 
tially high market prices during the period of high de- 
mand. In many cases, these price fluctuations will not be 
characterized by a stochastic error term with a constant 
distribution. Thus, the information gained from minimax 
simulation analysis would prove helpful. 

Tables 5 and 6 show simulations for different pa- 
rameters, where K = 12. Table 5 uses a demand growth 
rate of i = 0.03, and Table 5 uses a growth rate of i = 
0.02. These tables use the minimum whole number dis- 
turbance attenuation values for γ that allow the sad- 
dle-point solution existence condition to be satisfied. 
Note that the authors have run many simulations, and are 
only including the following examples as illustrations. 
The Matlab program for this scalar system is available 
from the authors upon request, and can be applied toward  
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Table 5. Scalar simulation with smaller state weights. 

k λ M u w xk S 

1 1.5867 0.6037 78.3908 2.2397 200.0000 10.3983

2 1.5867 0.6037 50.8942 1.4541 129.8489 7.5416

3 1.5866 0.6037 33.0420 0.9441 84.3044 5.7778

4 1.5866 0.6037 21.4514 0.6129 54.7355 4.5709

5 1.5864 0.6036 13.9258 0.3979 35.5391 3.6861

6 1.5861 0.6034 9.0392 0.2583 23.0773 3.0040

7 1.5852 0.6031 5.8654 0.1676 14.9887 2.4574

8 1.5831 0.6022 3.8032 0.1087 9.7405 2.0059

9 1.5783 0.6001 2.4618 0.0703 6.3382 1.6233

10 1.5671 0.5951 1.5868 0.0453 4.1369 1.2921

11 1.5414 0.5835 1.0125 0.0289 2.7196 1.0000

12 1.4861 0.5570 0.6301 0.0180 1.8176 0.7381

13  0.5000   1.2601 0.5000

a. A = 1.03, B = −1, D = 1, K = 12, R = 1, Qk = 0.2, Qf = 0.5, x1 = 200, r = 36, 
γ = 6. 

 
Table 6. Scalar simulation with larger state weights. 

k λ M u w xk S 

1 2.6357 1.6522 127.8788 1.2788 200.0000 61.1089

2 2.6357 1.6522 49.4891 0.4949 77.4000 36.6185

3 2.6357 1.6522 19.1523 0.1915 29.9538 25.5040

4 2.6357 1.6522 7.4119 0.0741 11.5921 19.0627

5 2.6357 1.6522 2.8684 0.0287 4.4861 14.7931

6 2.6356 1.6522 1.1101 0.0111 1.7361 11.7056

7 2.6356 1.6522 0.4296 0.0043 0.6719 9.3299

8 2.6352 1.6521 0.1662 0.0017 0.2600 7.4129

9 2.6326 1.6517 0.0643 0.0006 0.1006 5.8060

10 2.6155 1.6491 0.0248 0.0002 0.0390 4.4154

11 2.5076 1.6318 0.0094 0.0001 0.0152 3.1784

12 1.9900 1.5228 0.0032 0.0000 0.0062 2.0509

13  1.0000   0.0032 1.0000

a. A = 1.02, B = −1, D = 1, K = 12, R = 1, Qk = 1, Qf = 1, x1 = 200, r = 100, γ 
= 10. 

 
finding the H∞-optimal solution for any scalar analysis 
that uses expressions (1) and (2). 

When the state variable parameter weights Qf and Qk 
are larger, the purchaser will arrange more fix-price for- 
ward contracts during the earlier periods, and the worst- 
case disturbance term is driven down faster. As shown in  

Table 6, the purchaser will have purchased almost all of 
the required input in the forward market by the end of the 
planning horizon. As in the previous financial application 
example, this type of analysis can be used to plan a more 
robust optimal managerial strategy. 

5. Conclusions 

This analysis has developed a method for converting the 
discrete time LQ-tracking problem into an LQ-regulator 
design, which can be simulated with a Matlab software 
application. The framework can be utilized to provide 
insight into a variety of finance and economics issues. 
The limited application of H∞-optimal control methods in 
economic analysis has been partly due to the recognition 
that many economic problems can be adequately address- 
ed through robust control. This problem has been exag- 
gerated by a failure to formulate alternative robust ver- 
sions of ubiquitous economic problems where minimax 
control would have offered useful insight. The limited 
application of H∞-optimal control methods has also been 
partly due to the lack of efficient computational methods 
that can be readily employed to handle these problems. 
The above methodology has addressed all three of these 
H∞-optimal control robust application issues in financial 
economics: problem formulation, solution computation, 
and simulation. 

The minimax control methods explored in this paper 
have been employed in order to design a clear objective 
to guide the policies in terms of both thrust and magni- 
tude. The applications given above are straightforward, 
and represent only a small range of applications that 
could be addressed with this framework. They demon- 
strate how to formulate the applications as minimax pro- 
blems, and then how to use software to simulate solu- 
tions that have good performance. The minimax LQ- 
tracking conversion method and the associated Matlab 
program presented here provide a user-friendly computa- 
tional method that efficiently simulates the minimax de- 
sign, and can be used in applications in finance, eco- 
nomics, or other disciplines. Further analysis would ap- 
ply the method and the examples above to cases of im- 
perfect state information. The authors have explored some 
of these comparisons, but this is not discussed here since 
it is beyond the scope of the paper. 
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Appendix: Matlab Computer Program 

The Matlab computer problem for the matrix system problem for constant coefficients is given below. The user can set 
some of the system parameters, as described in the previous analysis, when prompted at the beginning of each simulation. 
The user can change the fixed matrix parameters within the code if desired in order use the program to solve other appli- 
cation problems. 
 
clear all 
clc 
format short 
run = 1; 
 
%user gets a choice between open loop information structure or closed-loop information structure. 
while (run == 1) 
fprintf('1: Open Loop Information 2: Closed Loop Information \n'); 
method = input('Choice: '); 
if method > 2 
error('Invalid Input') 
elseif method < 0 
error('Invalid Input') 
end 
 
switch method 
case 1% open loop information structure control 
 

%User input of desired iteration and other variables 
K = input('Input the number of iteration: '); 

ik = input('Input the desired i,k value: '); 
dk = input('Input the desired d,k value: '); 

q3f = input('Input the desired q3,f value: '); 
q3k = input('Input the desired q3,k value: '); 

 
%setting up the A,B,D,Qf,andQk matrix 
A = [1+ik 0 0; 0 1 0; 1+ik -1 0]; 
B = [1+ik; 0; 1+ik]; 
D = [dk; 0; 0]; 

Qf = [0 0 0;0 0 0; 0 0 q3f]; 
Qk = [0 0 0; 0 0 0; 0 0 q3k]; 
 

%user input of the r value 
r = input('Input the desired value of r: '); 

if r < 0 
error('Invalid input: the value of gamma cannot be negative') 
end 
 

%solving the Riccati Equation to check if the r value produces a unique saddle-point solution 
S = zeros(3,3,K); 

S(:,:,K+1) = Qf; 
 
fori = (K:-1:1) %Equation (4) above; Riccati Equation for S 

S(:,:,i) = Qk + (A'*S(:,:,i+1)*A)+(A'*S(:,:,i+1)*D)*(((r*eye(1))-D'*S(:,:,i+1)*D)^-1)*(D'*S(:,:,i+1)*A); 
end 
 
fprintf('S values: \n') 
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disp(S) 
 

%checking the condition given by Equation (3) above 
check = zeros(K,1); 
fprintf('Conditional Values: \n') 
for j = 1:1:K+1 
check(j) = (r*eye(1)) - (D'*S(:,:,j)*D); 
if check(j) < 0 
warning('Your r value does not satisfy the required condition') 
fprintf('Press any key to continue') 
pause 
end 
end 
disp(check) 
 

%Creating matrices for lambda,M,u,w,and x (state trajectory) 
lambda = zeros(3,3,K); 

M = zeros(3,3,K); 
M(:,:,K+1) = Qf; 

u = zeros(3,1,K); 
w = zeros(3,1,K); 
x = zeros(3,1,K); 

x_asterisk = zeros(3,1,K); 
 
for n =(K:-1:1) 

%Equations (5) and (6) above. 
lambda(:,:,n) = eye(size(A)) + (B*B' - (1/r)*(D'*D))*M(:,:,n+1); 

M(:,:,n) = Qk + (A'*M(:,:,n+1)*(lambda(:,:,n)^-1)*A); 
end 
 
fprintf('lambda values are: \n') 
disp(lambda) 
fprintf('M values are: \n') 
disp(M) 
 

%The initial value of x is given by the user 
x(:,:,1) = input('Input the initial value of x: '); 

%[0; 100000; -100000]; 
x_asterisk(:,:,1) = x(:,:,1); 

%condition given by Equation 3.5c 
 

%producing u,w,x, and x* values as described by above, and by Basar and Bernhard (1991) 
for k = 1:1:K %Equations (8), (9), and (10) above; equivalent to Equations 3.5a,3.5b,3.5c; 3.1 for x(k+1)=ax+bu+dw 

u(:,:,k) = -B'*M(:,:,k+1)*(lambda(:,:,k)^-1)*A*x_asterisk(:,:,k); 
w(:,:,k) = (1/r)*D'*M(:,:,k+1)*(lambda(:,:,k)^-1)*A*x_asterisk(:,:,k); 
x(:,:,k+1) = A*x(:,:,k)+ B.*u(:,:,k)+ D.*w(:,:,k); 

x_asterisk(:,:,k+1) = (lambda(:,:,k)^-1)*A*x_asterisk(:,:,k); 
end 
 
fprintf('u values are: \n') 
disp(u) 
fprintf('w values are: \n') 
disp(w) 
fprintf('State trajectories (x* values) are: \n') 
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disp(x_asterisk) 
 
case 2 %closed loop perfect state information structure 
 

%Desired number of iteration 
K = input('Input the number of iteration: '); 

if K < 1 
error('Invalid input') 
elseif K == 1 

fprintf('For a better result, choose higher number of K') 
end 
 

%Parameters given by the user 
ik = input('Input the desired i,k value: '); 
dk = input('Input the desired d,k value: '); 

q3f = input('Input the desired q3,f value: '); 
q3k = input('Input the desired q3,k value: '); 

 
A = [1+ik 0 0;0 1 0;1+ik -1 0]; 
B = [1+ik;0;1+ik]; 
D = [dk;0;0]; 

Qf = [0 0 0;0 0 0; 0 0 q3f]; 
Qk = [0 0 0; 0 0 0; 0 0 q3k]; 
 

%User desired r 
r = input('Input the desired value of r: '); 

if r < 0 
error('Invalid input: gamma cannot be negative') 
end 
 
lambda = zeros(3,3,K); 

M = zeros(3,3,K); 
M(:,:,K+1) = Qf; 

u = zeros(3,1,K); 
w = zeros(3,1,K); 
x = zeros(3,1,K); 

 
for n =(K:-1:1) %Equations 3.4a,3.4b 
lambda(:,:,n) = eye(size(A)) + (B*B' - (1/r)*(D'*D))*M(:,:,n+1); 

M(:,:,n) = Qk + (A'*M(:,:,n+1)*(lambda(:,:,n)^-1)*A); 
end 
 
fprintf('lambda values are: \n') 
disp(lambda) 
fprintf('M values are: \n') 
disp(M) 
 
%checking the condition given by Equation (12) above. 
xi = zeros(K,1); 
fprintf('Conditional Values: \n') 
for j = 1:1:K 
xi(j) = (r*eye(1)) - (D'*M(:,:,j+1)*D); 
if xi(j) < 0 
warning('Your r value does not admit an unique saddle-point solution') 
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fprintf('Press any key to continue') 
pause 
end 
end 
disp(xi) 
 

%The initial value of x is given by the user 
x(:,:,1) = input('Input the initial value of x: '); %[0; 100000; -100000]; 
 

%producing x values 
for k = 1:1:K 

%Equations (13), (14), (15) above, for x(k+1)=ax+bu+dw 
u(:,:,k) = -B'*M(:,:,k+1)*(lambda(:,:,k)^-1)*A*x(:,:,k); 
w(:,:,k) = (1/r)*D'*M(:,:,k+1)*(lambda(:,:,k)^-1)*A*x(:,:,k); 
x(:,:,k+1) = A*x(:,:,k)+ B.*u(:,:,k)+ D.*w(:,:,k); 

end 
 
fprintf('u values are: \n') 
disp(u) 
fprintf('w values are: \n') 
disp(w) 
fprintf('State trajectories (x values) are: \n') 
disp(x) 
 
end 
 

%option to exit the program 
fprintf('1 : for more computation 2: exit\n') 
run = input('Choice: '); 
end 


